高级检索
当前位置: 首页 > 详情页

Rapid identification of tumor patients with PG-SGA ≥ 4 based on machine learning: a prospective study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Medicine, University of Electronic Science and Technology of China, Chengdu, China [2]Department of Comprehensive Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China [3]Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital &Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China [4]Department of Chest Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
出处:

关键词: Cancer Nutritional Assessment Patient-Generated Subjective Global Assessment Machine Learning

摘要:
Malnutrition is common in cancer patients and worsens treatment and prognosis. The Patient-Generated Subjective Global Assessment (PG-SGA) is the best tool to evaluate malnutrition, but it is complicated has limited its routine clinical use.We reviewed 798 records from 416 cancer patients treated at our hospital from July 2022 to March 2024. We used machine learning methods like XGBoost and Random Forest to find important factors linked to PG-SGA scores of 4 or higher. We confirmed the most important factors with logistic regression analysis.Among all models, XGBoost and Random Forest models perform the best, with the area under the curve (AUC) reaching of 0.75 and 0.77. Multivariate logistic regression analysis identified body mass index (BMI) (OR = 0.82, 95%CI 0.66-0.99; P = 0.045), handgrip strength (HGS) (OR = 0.89, 95%CI 0.82-0.96; P = 0.004), fat-free mass index (FFMI) (OR = 1.36, 95%CI 1.01-1.88; P = 0.045), and bedridden status (OR = 3.16, 95%CI 1.17-9.14; P = 0.026) as key predictors for PG-SGA scores of ≥ 4.BMI, HGS, FFMI, and bedridden status were identified as practical indicators to efficiently screen patients likely to have PG-SGA scores ≥ 4.© 2025. The Author(s).

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2024]版:
Q2 ONCOLOGY
最新[2024]版:
Q2 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:59504 今日访问量:0 总访问量:4869 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号