高级检索
当前位置: 首页 > 详情页

A Transformable Amphiphilic and Block Polymer-Dendron Conjugate for Enhanced Tumor Penetration and Retention with Cellular Homeostasis Perturbation via Membrane Flow.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 自然指数

机构: [1]Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. [2]Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom. [3]Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China. [4]Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA.
出处:
ISSN:

关键词: polymer-dendron conjugates stimuli-responsive drug delivery systems stealthy-to-sticky transition membrane flow tumor penetration and retention cancer cellular homeostasis

摘要:
Efficient penetration and retention of therapeutic agents in tumor tissues can be realized through rational design of drug delivery systems. Herein, we present a polymer-dendron conjugate, POEGMA-b-p(GFLG-Dendron-Ppa) (GFLG-DP), which allows cathepsin B (CTSB)-triggered stealthy-to-sticky structural transformation. The compositions and ratios were optimized through dissipative particle dynamics simulations. GFLG-DP displayed tumor-specific transformation and consequently released dendron-Ppa was found to effectively accumulate on the tumor cell membrane. The interaction between dendron-Ppa and the tumor cell membrane resulted in intracellular and intercellular transport via membrane flow, thus achieving efficient deep penetration and prolonged retention of therapeutic agents in solid tumor tissues. Meanwhile, the interaction of dendron-Ppa with endoplasmic reticulum disrupted the cell homeostasis, making tumor cells more vulnerable and susceptible to the photodynamic therapy. This platform represents a versatile approach to augmenting the tumor therapeutic efficacy of a nanomedicine via manipulation of its interactions with tumor membrane systems. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 材料科学
小类 | 1 区 材料科学:综合 1 区 物理化学 1 区 物理:凝聚态物理 1 区 化学:综合 1 区 纳米科技 1 区 物理:应用
最新[2023]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 物理化学 1 区 材料科学:综合 1 区 纳米科技 1 区 物理:应用 1 区 物理:凝聚态物理
第一作者:
第一作者机构: [1]Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
通讯作者:
通讯机构: [1]Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. [3]Functional and Molecular Imaging Key Laboratory of Sichuan Province, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43389 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号