高级检索
当前位置: 首页 > 详情页

MSpectraAI: a powerful platform for deciphering proteome profiling of multi-tumor mass spectrometry data by using deep neural networks.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ EI

机构: [1]West China‑Washington Mitochondria and Metabolism Research Center Key Lab of Transplant Engineering and Immu‑Nology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No. 88, Keyuan South Road, Hi‑tech Zone, Chengdu 610041, China. [2]Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
出处:

关键词: Raw mass spectrometry data Proteome profiling Feature swath extraction Deep neural networks Multi-tumor types Leave-one-out cross prediction strategy

摘要:
Mass spectrometry (MS) has become a promising analytical technique to acquire proteomics information for the characterization of biological samples. Nevertheless, most studies focus on the final proteins identified through a suite of algorithms by using partial MS spectra to compare with the sequence database, while the pattern recognition and classification of raw mass-spectrometric data remain unresolved.We developed an open-source and comprehensive platform, named MSpectraAI, for analyzing large-scale MS data through deep neural networks (DNNs); this system involves spectral-feature swath extraction, classification, and visualization. Moreover, this platform allows users to create their own DNN model by using Keras. To evaluate this tool, we collected the publicly available proteomics datasets of six tumor types (a total of 7,997,805 mass spectra) from the ProteomeXchange consortium and classified the samples based on the spectra profiling. The results suggest that MSpectraAI can distinguish different types of samples based on the fingerprint spectrum and achieve better prediction accuracy in MS1 level (average 0.967). This study deciphers proteome profiling of raw mass spectrometry data and broadens the promising application of the classification and prediction of proteomics data from multi-tumor samples using deep learning methods. MSpectraAI also shows a better performance compared to the other classical machine learning approaches.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 计算机科学
小类 | 3 区 生化研究方法 3 区 生物工程与应用微生物 3 区 数学与计算生物学
最新[2023]版:
大类 | 3 区 生物学
小类 | 3 区 生化研究方法 3 区 数学与计算生物学 4 区 生物工程与应用微生物
第一作者:
第一作者机构: [1]West China‑Washington Mitochondria and Metabolism Research Center Key Lab of Transplant Engineering and Immu‑Nology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No. 88, Keyuan South Road, Hi‑tech Zone, Chengdu 610041, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53080 今日访问量:0 总访问量:4588 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号