高级检索
当前位置: 首页 > 详情页

Deep Convolutional Neural Network Based on Computed Tomography Images for the Preoperative Diagnosis of Occult Peritoneal Metastasis in Advanced Gastric Cancer.

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Radiology, West China Hospital, Sichuan University, Chengdu, China, [2]State Key Laboratory of Biotherapy, Department of Gastrointestinal Surgery and Laboratory of Gastric Cancer, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China, [3]Department of Pathology, West China Hospital, Sichuan University, Chengdu, China, 4 Institute of Advanced Research, Infervision, Beijing, China
出处:
ISSN:

关键词: stomach neoplasms peritoneal neoplasms deep learning tomography x-ray computed neural networks computer

摘要:
We aimed to develop a deep convolutional neural network (DCNN) model based on computed tomography (CT) images for the preoperative diagnosis of occult peritoneal metastasis (OPM) in advanced gastric cancer (AGC). A total of 544 patients with AGC were retrospectively enrolled. Seventy-nine patients were confirmed with OPM during surgery or laparoscopy. CT images collected during the initial visit were randomly split into a training cohort and a testing cohort for DCNN model development and performance evaluation, respectively. A conventional clinical model using multivariable logistic regression was also developed to estimate the pretest probability of OPM in patients with gastric cancer. The DCNN model showed an AUC of 0.900 (95% CI: 0.851-0.953), outperforming the conventional clinical model (AUC = 0.670, 95% CI: 0.615-0.739; p < 0.001). The proposed DCNN model demonstrated the diagnostic detection of occult PM, with a sensitivity of 81.0% and specificity of 87.5% using the cutoff value according to the Youden index. Our study shows that the proposed deep learning algorithm, developed with CT images, may be used as an effective tool to preoperatively diagnose OPM in AGC. Copyright © 2020 Huang, Liu, Chen, He, Yu, Liu, Wu, Hu and Song.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
第一作者:
第一作者机构: [1]Department of Radiology, West China Hospital, Sichuan University, Chengdu, China,
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:1 总访问量:4560 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号