高级检索
当前位置: 首页 > 详情页

Nanoparticles Used for the Delivery of RNAi-Based Therapeutics

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Nephrology, Kidney Research Institute, Science & Technology Department, West China Hospital of Sichuan University, Chengdu 610041, China.
出处:
ISSN:

关键词: liposomes polymeric nanoparticles exosomes miRNA siRNA

摘要:
RNA interference (RNAi) offers programmable, sequence-specific silencing via small interfering RNA (siRNA) and microRNA (miRNA), but clinical translation hinges on overcoming instability, immunogenicity, and inefficient endosomal escape. This review synthesizes advances in non-viral nanocarriers-liposomes, polymeric nanoparticles, and extracellular vesicles (EVs)-that stabilize nucleic acids, tune biodistribution, and enable organ- and cell-selective delivery. We highlight design levers that now define the field: ligand-guided targeting, stimuli-responsive release, biomimicry and endogenous carriers, and rational co-delivery with small molecules. Across major disease areas-cancer and cardiovascular, respiratory, and urological disorders-these platforms achieve tissue-selective uptake (e.g., macrophages, endothelium, and myocardium), traverse physiological barriers (including the blood-brain barrier and fibrotic stroma), and remodel hostile microenvironments or immune programs to enhance efficacy while maintaining favorable safety profiles. Early clinical studies reflect this diversity, spanning targeted nanoparticles, local drug depots, exosome and cellular carriers, and inhaled formulations, e.g., and converge on core phase-I endpoints (safety, maximum tolerated dose, pharmacokinetics/pharmacodynamics, and early activity). Looking ahead, priorities include good manufacturing practice scale, consistent manufacture-especially for EVs; more efficient loading and cargo control; improved endosomal escape and biodistribution; and rigorous, long-term safety evaluation with standardized, head-to-head benchmarking. Emerging directions such as in vivo EVs biogenesis, theragnostic integration, and data-driven formulation discovery are poised to accelerate translation. Collectively, nanoparticle-enabled RNAi has matured into a versatile, clinically relevant toolkit for precise gene silencing, positioning the field to deliver next-generation therapies across diverse indications.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 药学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 药学
第一作者:
第一作者机构: [1]Department of Nephrology, Kidney Research Institute, Science & Technology Department, West China Hospital of Sichuan University, Chengdu 610041, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:0 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号