高级检索
当前位置: 首页 > 详情页

Shell-thickness-mediated anomalous thermal enhancement of core-shell-shell structured nanoparticles for nanothermometry and dual-mode bioimaging

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Peoples R China [2]Univ Elect Sci & Technol China, Sch Med, Chengdu 610054, Peoples R China [3]Chengdu Univ Tradit Chinese Med, Sch Basic Med Sci, Chengdu 610075, Peoples R China [4]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Canc Ctr, Dept Radiol,Sichuan Clin Res Ctr Canc, Chengdu 610041, Peoples R China [5]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst,Dept Radiat Oncol, Sichuan Clin Res Ctr Canc,Sichuan Canc Ctr, Radiat Oncol Key Lab Sichuan Prov, Chengdu 610041, Peoples R China [6]Univ Elect Sci & Technol China, Glasgow Coll Hainan, Lingshui 572400, Peoples R China
出处:
ISSN:

关键词: Lanthanide nanoparticles Core-shell engineering Upconversion luminescence Nanothermometry Dual-mode bioimaging

摘要:
Modern nanotechnology increasingly demands multifunctional nanomaterials, motivating rational core-shell designs to integrate diverse capabilities within a single nanostructure. Herein, core-shell-shell structured NaYF4:20%Yb3+@NaErF4:0.5%Tm3+@NaGdF4:20%Yb3+ nanoparticles are developed through a layer-by-layer epitaxial growth strategy. The key novelty of this synthesis lies in the precise spatial organization of functional ions: an inner core and an outer shell rich in Yb3+ sensitizers collaboratively pump a central energymigrating erbium sublattice. This unique architecture exhibits intense red upconversion luminescence under 980 nm excitation while enabling multimodal nanothermometry and dual-modal bioimaging (optical imaging and T1-weighted magnetic resonance imaging). Aberration-corrected transmission electron microscopy (ACTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analyses confirm the precise layered architecture and high crystallinity. Significantly, the outer thin shell induces anomalous thermal enhancement at 544 nm. This phenomenon is governed by a shell-thickness-mediated energy migration process, which modulates the interaction between the erbium sublattice and surface ligands, thereby facilitating enhanced performance in multimodal nanothermometry. HAADF-STEM provides direct visualization of shell thickness variations, offering mechanistic evidence for this phenomenon. Crucially, dual-modal bioimaging capability is validated in vivo. This core-shell design strategy advances the development of multifunctional nanoparticles for nanothermometry and bioimaging applications.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2026]版:
最新[2025]版:
大类 | 1 区 化学
小类 | 2 区 物理化学
JCR分区:
出版当年[2026]版:
最新[2024]版:
Q1 CHEMISTRY, PHYSICAL

影响因子: 最新[2024版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2025版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Peoples R China
通讯作者:
通讯机构: [1]Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Peoples R China [6]Univ Elect Sci & Technol China, Glasgow Coll Hainan, Lingshui 572400, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:0 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号