高级检索
当前位置: 首页 > 详情页

Chemical Affinity Capture of Plasma Extracellular Vesicles Enables Efficient and Large-Scale Proteomic Identification of Prostate Cancer Biomarkers

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics. National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China. [2]Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China. [3]Proteomics and Metabolomics Core Facilities, West China Hospital, Sichuan University, Chengdu610041, China. [4]Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu610041, China. [5]Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu610072, China. [6]Department of Pathology, West China Hospital, Sichuan University, Chengdu610041, China.
出处:
ISSN:

关键词: prostate cancer extracellular vesicles proteomics biomarker noninvasive diagnosis

摘要:
The serum prostate-specific antigen (PSA) testing is widely used for prostate cancer (PCa) screening but suffers from poor specificity, leading to unnecessary biopsies and overtreatment. The significant potential of extracellular vesicles (EVs) in cancer diagnosis has driven the development of efficient methods to isolate and identify EV biomarkers from large-scale clinical samples. Here, we systematically evaluate five commonly used EV isolation techniques through proteomic profiling of plasma-derived EVs, endorsing TiO2-based chemical affinity capture as a superior approach for analyzing EVs from complex clinical samples. This method demonstrates exceptional advantages in speed, throughput, reproducibility, and protein coverage. Using this optimized workflow, we analyzed plasma EVs from 80 patients with PCa and benign prostatic hyperplasia (BPH), identifying growth differentiation factor 15 (GDF15) as a compelling biomarker with a predictive power (AUC) of 0.908 for PCa. Extensive validation across independent cohorts comprising 457 samples, including plasma EVs and prostate tissues, confirmed GDF15's ability to distinguish PCa from BPH and stratify PCa stages. Notably, the combination of GDF15 with PSA further enhanced diagnostic efficiency, particularly for patients in the PSA diagnostic gray zone. This study establishes a robust workflow for EV protein analysis in large clinical cohorts and highlights EV-GDF15 as a promising biomarker for noninvasive PCa diagnosis.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技
最新[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技
JCR分区:
出版当年[2025]版:
最新[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 CHEMISTRY, PHYSICAL Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics. National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China. [2]Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China.
共同第一作者:
通讯作者:
通讯机构: [1]Liver Surgery and NHC Key Lab of Transplant Engineering and Immunology, Institutes for Systems Genetics. National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu610041, China. [2]Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu610041, China. [3]Proteomics and Metabolomics Core Facilities, West China Hospital, Sichuan University, Chengdu610041, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:59096 今日访问量:0 总访问量:4851 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号