高级检索
当前位置: 首页 > 详情页

NAD+ metabolism reprogramming mediated irradiation-induced immunosuppressive polarization of macrophages

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, 610041, Chengdu, China. [2]Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China, Chengdu, 610041, China. [3]School of Computer Science, Chengdu University of Information Technology, Chengdu 610225, China. [4]Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu 610065, China.
出处:
ISSN:

关键词: Head and neck squamous cell carcinomas extracellular vesicles Head and neck squamous cell carcinomas

摘要:
radiotherapy stands as an important complementary treatment for head and neck squamous cell carcinoma (HNSCC), yet it does not invariably result in complete tumor regression. The infiltration of immunosuppressive macrophages is believed to mediate the radiotherapy resistance, which mechanism remains largely unexplored. This study aimed to elucidate the role of immunosuppressive macrophages during radiotherapy and the associated underlying mechanisms.Male C3H mice bearing syngeneic SCC-VII tumor were received irradiation (2 × 8Gy). The impact of irradiation on tumor-infiltrating macrophages were assessed. Bone marrow derived macrophages were evaluated in differentiation, proliferation, migration, and inflammatory cytokines after treatment of irradiated tumor culture medium (irCM) and irradiated tumor derived extracellular vesicles (irTEVs). A comprehensive metabolomics profiling of the irTEVs was conducted using liquid chromatography-mass spectrometry, while key metabolites were investigated the mechanism in macrophage in vitro and in vivo.Radiotherapy on SCC-VII syngeneic graft tumors increased polarization of both M1 and M2 macrophages in tumor microenvironment and drove infiltrated macrophages towards an immunosuppressive phenotype. Irradiation-induced polarization and immunosuppression of macrophages were dependent on irTEVs which delivered an increased amount of nicotinamide (NAM) to macrophages. NAM directly bound to the NF-κB transcriptional activity regulator USP7, through which NAM reduced translocation of NF-κB into the nucleus, thereby decreasing the release of cytokines IL6 and IL8. Increased enzyme activity of nicotinamide phosphoribosyl transferase (NAMPT) which is the rate-limiting enzyme of NAD+ metabolism, contributed to the irradiation-induced accumulation levels of NAM in irradiated HNSCC and irTEVs. Inhibition of NAMPT decreased NAM levels in irTEVs and increased radiotherapy sensitivity through alleviating immunosuppressive function of macrophages.Radiotherapy could induce NAD+ metabolic reprogramming of HNSCC cells, which regulate macrophage towards an immunosuppressive phenotype. Pharmacological targeting NAD+ metabolism might be a promising strategy for radiotherapy sensitization of HNSCC.Copyright © 2024 Elsevier Ltd. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学 2 区 核医学
最新[2023]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学 2 区 核医学
第一作者:
第一作者机构: [1]Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, 610041, Chengdu, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Sichuan University, 610041, Chengdu, China. [*1]Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin South Road, 610041 Chengdu, Sichuan, PR China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43373 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号