高级检索
当前位置: 首页 > 详情页

Isothermal amplification based on specific signal extraction and output for fluorescence and colorimetric detection of nucleic acids

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, PR China [2]School of Pharmacy & School of Preclinical Medicine, North Sichuan Medical College, Nanchong, 637000, PR China [3]Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College & Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, PR China [4]Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
出处:
ISSN:

关键词: Specific signal extraction Isothermal amplification Nucleic acids detection Fluorescence and colorimetric detection

摘要:
Due to the complexity of compositions and low abundance of target in clinical sample, nucleic acids detection often suffers from false positives caused by nonspecific amplification. In in vitro diagnosis (IVD), PCR usually employ TaqMan probe to report specific signals and block false positive signals. However, nucleic acid isothermal amplifications, such as loop-mediated isothermal amplification (LAMP), lack of mature specific signal output mechanism, which prevents them from being used for IVD and point-of-care testing (POCT). In this work, we constructed a specific signal extract-to-output isothermal detection system (SSEI). SSEI contains a well-designed DNA probe for specific signal extraction and output in LAMP. This probe is a double-stranded DNA with an overhang sequence and named as extract-to-output probe (ETO probe). ETO probe can recognize the target-specific intermediate products in LAMP and release another signal-output probe (OP) to report the target-specific signals. With these unique properties, SSEI can detect as low as 10 copies of target DNA per reaction either by fluorescence detector or naked eyes. Moreover, due to the excellent performance against background nucleic acids interference, this biosensing platform had been successfully used for hepatitis B virus (HBV) clinical samples detection.Copyright © 2022 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 化学
小类 | 1 区 分析化学
最新[2023]版:
大类 | 1 区 化学
小类 | 1 区 分析化学
JCR分区:
出版当年[2023]版:
Q1 CHEMISTRY, ANALYTICAL
最新[2023]版:
Q1 CHEMISTRY, ANALYTICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Clinical Laboratory, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, PR China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:46895 今日访问量:0 总访问量:3333 更新日期:2024-11-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号