高级检索
当前位置: 首页 > 详情页

DRT: A new toolbox for the Standard EEG Data Structure in large-scale EEG applications

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China [2]Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, Sichuan, China [3]Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China [4]The Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China [5]School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, China
出处:
ISSN:

关键词: EEG Datafile Restructuring Toolbox Standard EEG Data Structure (SEDS) Standardization

摘要:
The current evolution of "open neuroscience" has led to an increased amount of research on large-scale electroencephalography (EEG) applications, resulting in large quantities of accumulated EEG data. The batch sharing and processing of these massive EEG data play an important role in EEG studies within or across laboratories and result in an increasing requirement for a standard data file structure for existing EEG data. In this work, a new and more flexible data structure, named the Standard EEG Data Structure (SEDS), was proposed to meet the needs of both small-scale EEG data batch processing in single-site studies and large-scale EEG data sharing and analysis in single-/multisite studies (especially on cloud platforms). Furthermore, two versions (MATLAB and Docker versions) of the EEG Datafile Restructuring Toolbox (DRT) were developed to restructure EEG data files according to the SEDS. The DRT GUI (MATLAB version) dramatically reduces the time required for novice researchers, while the DRT (Docker version) is more efficient for experienced researchers. All materials including SEDS documents, tools, example datasets, etc., are available on the WeBrain website (https://webrain.uestc.edu.cn/) and (https://github.com/WeCloudHub/DRT). Wild We hope that these two user-friendly toolboxes can make the relatively novel SEDS easier to collaboratively study, especially for applications in large-scale EEG studies. (C) 2021 The Author(s). Published by Elsevier B.V.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:软件工程
最新[2023]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:软件工程
JCR分区:
出版当年[2022]版:
Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
最新[2023]版:
Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China [2]Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, Sichuan, China [3]Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China [*1]Xiyuan Ave, Chengdu, Sichuan, 611731, China.
共同第一作者:
通讯作者:
通讯机构: [1]The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China [2]Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, Sichuan, China [3]Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China [5]School of Electrical Engineering, Zhengzhou University, Zhengzhou, Henan, China [*1]Xiyuan Ave, Chengdu, Sichuan, 611731, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53095 今日访问量:0 总访问量:4588 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号