高级检索
当前位置: 首页 > 详情页

Recognition of the Multi-class Schizophrenia Based on the Resting-State EEG Network Topology

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Clin Hosp, MOE Key Lab Neuroinformat, Chengdu Brain Sci Inst, Chengdu 611731, Peoples R China [2]Univ Elect Sci & Technol China, Ctr Informat Med, Sch Life Sci & Technol, Chengdu 611731, Peoples R China [3]Southwest Univ Sci & Technol, Sch Comp Sci & Technol, Mianyang 621010, Sichuan, Peoples R China [4]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Canc Ctr, Sch Med,Dept Equipment, Chengdu 610054, Peoples R China [5]Radiat Oncol Key Lab Sichuan Prov, Chengdu 610042, Peoples R China [6]Chengdu Mental Hlth Ctr, Chengdu 610036, Peoples R China [7]Chinese Acad Med Sci, Res Unit NeuroInformat, 2019RU035, Chengdu, Peoples R China [8]Zhengzhou Univ, Sch Elect Engn, Zhengzhou 450001, Peoples R China
出处:
ISSN:

关键词: Functional connectivity Multi-class spatial pattern of the network Resting-state EEG Schizophrenia

摘要:
The clinical therapy of schizophrenia (SCZ) replies on the corresponding accurate and reliable recognition. Although efforts have been paid, the diagnosis of SCZ is still roughly subjective, it is thus urgent to search for related objective physiological parameters. Motivated by the great potential of resting-state networks in underling the brain deficits among different SCZ groups, in this study, we then developed a multi-class feature extraction approach that could effectively extract the spatial network topology and facilitate the recognition of the SCZ, by combining a network structure based supervised learning with an ensemble co-decision strategy. The results demonstrated that the multi-class spatial pattern of the network (MSPN) features outperformed the other conventional electrophysiological features, such as relative power spectrums and network properties, and achieved the highest classification accuracy of 71.58% in the alpha band. These findings did validate that the resting-state MSPN is a promising tool for the clinical assessment of the SCZ.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 临床神经病学 4 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 临床神经病学 3 区 神经科学
JCR分区:
出版当年[2022]版:
Q3 CLINICAL NEUROLOGY Q3 NEUROSCIENCES
最新[2023]版:
Q3 CLINICAL NEUROLOGY Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Clin Hosp, MOE Key Lab Neuroinformat, Chengdu Brain Sci Inst, Chengdu 611731, Peoples R China [2]Univ Elect Sci & Technol China, Ctr Informat Med, Sch Life Sci & Technol, Chengdu 611731, Peoples R China [7]Chinese Acad Med Sci, Res Unit NeuroInformat, 2019RU035, Chengdu, Peoples R China
通讯作者:
通讯机构: [1]Univ Elect Sci & Technol China, Clin Hosp, MOE Key Lab Neuroinformat, Chengdu Brain Sci Inst, Chengdu 611731, Peoples R China [6]Chengdu Mental Hlth Ctr, Chengdu 610036, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号