高级检索
当前位置: 首页 > 详情页

Radiomic Analysis of CT Predicts Tumor Response in Human Lung Cancer with Radiotherapy.

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Urban Vocational College of Sichuan, Chengdu, China [2]Sichuan Cancer Hospital & Institute, Chengdu, China [3]Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Chengdu 610041, China [4]Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
出处:
ISSN:

关键词: Radiomics Lung cancer Radiotherapy Machine learning

摘要:
Radiomics features can be positioned to monitor changes throughout treatment. In this study, we evaluated machine learning for predicting tumor response by analyzing CT images of lung cancer patients treated with radiotherapy. For this retrospective study, screening or standard diagnostic CT images were collected for 100 patients (mean age, 67 years; range, 55-82 years; 64 men [mean age, 68 years; range, 55-82 years] and 36 women [mean age, 65 years; range, 60-72 years]) from two institutions between 2013 and 2017. Radiomics analysis was available for each patient. Features were pruned to train machine learning classifiers with 50 patients, then trained in the test dataset. A support vector machine classifier with 2 radiomic features (flatness and coefficient of variation) achieved an area under the receiver operating characteristic curve (AUC) of 0.91 on the test set. The 2 radiomic features, flatness, and coefficient of variation, from the volume of interest of lung tumor, can be the biomarkers for predicting tumor response at CT.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 工程技术
小类 | 3 区 核医学
最新[2023]版:
大类 | 2 区 工程技术
小类 | 3 区 核医学
JCR分区:
出版当年[2020]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Urban Vocational College of Sichuan, Chengdu, China [2]Sichuan Cancer Hospital & Institute, Chengdu, China
通讯作者:
通讯机构: [3]Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Chengdu 610041, China [4]Radiation Oncology, Key Laboratory of Sichuan Province, Chengdu, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号