高级检索
当前位置: 首页 > 详情页

JOANet: An Integrated Joint Optimization Architecture Making Medical Image Segmentation Really Helped by Super-Resolution Pre-Processing

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China UESTC, Sichuan Canc Hosp & Inst, Sch Life Sci & Technol, Chengdu 610054, Peoples R China
出处:
ISSN:

关键词: Image segmentation Superresolution Biomedical imaging Semantics Image resolution Object segmentation Image reconstruction Medical diagnostic imaging Training Transformers Image enhancement medical image segmentation joint optimization image super-resolution

摘要:
Conventional computer vision pipelines typically treat low-level enhancement and high-level semantic tasks as isolated processes, focusing on optimizing enhancement for perceptual quality rather than computational utility, neglecting semantic task requirements. To bridge this gap, this paper proposes an integrated joint optimization architecture that aligns the objectives of enhancement tasks with the practical needs of semantic tasks. Specifically, the architecture ensures that medical image segmentation (the semantic task) benefits directly from super-resolution pre-processing (the enhancement task). This integrated architecture fundamentally differs from conventional sequential frameworks by enabling joint training of super-resolution and segmentation networks. Guided by its own content reconstruction loss and semantic loss transferred from segmentation, the super-resolution network prioritizes semantically significant regions for segmentation-driven reconstruction. Comprehensive comparative and ablation studies demonstrate that the network, trained jointly, markedly enhances segmentation performance in low-resolution images, even outperforming those directly from referenced high-resolution images. The code is available at https://github.com/kldys/JOANet

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:人工智能 1 区 工程:电子与电气
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:人工智能 1 区 工程:电子与电气
JCR分区:
出版当年[2024]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2024]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China UESTC, Sichuan Canc Hosp & Inst, Sch Life Sci & Technol, Chengdu 610054, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65763 今日访问量:1 总访问量:5149 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号