高级检索
当前位置: 首页 > 详情页

Cross-Domain Mutual-Assistance Learning Framework for Fully Automated Diagnosis of Primary Tumor in Nasopharyngeal Carcinoma

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou 510515, Guangdong, Peoples R China [2]Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China [3]Southern Med Univ, Nanfang Hosp, Dept Med Imaging Ctr, Guangzhou 510515, Peoples R China [4]Southern Med Univ, Nanfang Hosp, Dept Radiat Oncol, Guangzhou 510515, Peoples R China [5]Affiliated Canc Hosp Univ Elect Sci & Technol Chin, Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc, Dept Radiat Oncol,Radiat Oncol Key Lab Sichuan Pro, Chengdu 610041, Peoples R China [6]Affiliated Canc Hosp Univ Elect Sci & Technol Chin, Sichuan Canc Ctr, Chengdu 610041, Peoples R China
出处:
ISSN:

关键词: Tumors Feature extraction Image segmentation Medical diagnostic imaging Task analysis Knowledge engineering Mutual information Nasopharyngeal carcinoma T-staging cross-domain mutual-assistance learning multi-domain diagnostic-oriented knowledge

摘要:
Accurate T-staging of nasopharyngeal carcinoma (NPC) holds paramount importance in guiding treatment decisions and prognosticating outcomes for distinct risk groups. Regrettably, the landscape of deep learning-based techniques for T-staging in NPC remains sparse, and existing methodologies often exhibit suboptimal performance due to their neglect of crucial domain-specific knowledge pertinent to primary tumor diagnosis. To address these issues, we propose a new cross-domain mutual-assistance learning framework for fully automated diagnosis of primary tumor using H&N MR images. Specifically, we tackle primary tumor diagnosis task with the convolutional neural network consisting of a 3D cross-domain knowledge perception network (CKP net) for excavated cross-domain-invariant features emphasizing tumor intensity variations and internal tumor heterogeneity, and a multi-domain mutual-information sharing fusion network (M2SF net), comprising a dual-pathway domain-specific representation module and a mutual information fusion module, for intelligently gauging and amalgamating multi-domain, multi-scale T-stage diagnosis-oriented features. The proposed 3D cross-domain mutual-assistance learning framework not only embraces task-specific multi-domain diagnostic knowledge but also automates the entire process of primary tumor diagnosis. We evaluate our model on an internal and an external MR images dataset in a three-fold cross-validation paradigm. Exhaustive experimental results demonstrate that our method outperforms the other algorithms, and obtains promising performance for tumor segmentation and T-staging. These findings underscore its potential for clinical application, offering valuable assistance to clinicians in treatment decision-making and prognostication for various risk groups.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou 510515, Guangdong, Peoples R China [2]Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Southern Med Univ, Guangdong Prov Key Lab Med Image Proc, Guangdong Prov Engn Lab Med Imaging & Diagnost Tec, Guangzhou 510515, Guangdong, Peoples R China [2]Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53080 今日访问量:0 总访问量:4588 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号