高级检索
当前位置: 首页 > 详情页

CDDSA: Contrastive domain disentanglement and style augmentation for generalizable medical image segmentation

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China [2]School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China [3]School of Biomedical Engineering, ShanghaiTech University, Shanghai, China [4]School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China [5]SenseTime Research, Shanghai, China [6]Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, University of Electronic Science and Technology of China, Chengdu, China [7]West China Hospital-SenseTime Joint Lab, West China Biomedical Big Data Center, Sichuan University, Chengdu, China [8]Department of Computer Science, Rutgers University, Piscataway NJ 08854, USA [9]Shanghai AI Lab, Shanghai, China
出处:
ISSN:

关键词: Disentanglement Domain generalization Contrastive learning Medical image segmentation

摘要:
Generalization to previously unseen images with potential domain shifts is essential for clinically applicable medical image segmentation. Disentangling domain-specific and domain-invariant features is key for Domain Generalization (DG). However, existing DG methods struggle to achieve effective disentanglement. To address this problem, we propose an efficient framework called Contrastive Domain Disentanglement and Style Augmentation (CDDSA) for generalizable medical image segmentation. First, a disentangle network decomposes the image into domain-invariant anatomical representation and domain-specific style code, where the former is sent for further segmentation that is not affected by domain shift, and the disentanglement is regularized by a decoder that combines the anatomical representation and style code to reconstruct the original image. Second, to achieve better disentanglement, a contrastive loss is proposed to encourage the style codes from the same domain and different domains to be compact and divergent, respectively. Finally, to further improve generalizability, we propose a style augmentation strategy to synthesize images with various unseen styles in real time while maintaining anatomical information. Comprehensive experiments on a public multi-site fundus image dataset and an in-house multi-site Nasopharyngeal Carcinoma Magnetic Resonance Image (NPC-MRI) dataset show that the proposed CDDSA achieved remarkable generalizability across different domains, and it outperformed several state-of-the-art methods in generalizable segmentation. Code is available at https://github.com/HiLab-git/DAG4MIA.Copyright © 2023. Published by Elsevier B.V.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:人工智能 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 核医学
JCR分区:
出版当年[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
通讯作者:
通讯机构: [1]School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China [5]SenseTime Research, Shanghai, China [9]Shanghai AI Lab, Shanghai, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号