高级检索
当前位置: 首页 > 详情页

Cytological Classification Diagnosis for Thyroid Nodules via Multimodal Model Deep Learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Southern Med Univ, Nanfang Hosp, Dept Pathol, Guangzhou 510515, Peoples R China [2]Southern Med Univ, Sch Basic Med Sci, Guangzhou 510515, Peoples R China [3]Chongqing Univ, Coll Bioengn, Chongqing 400030, Peoples R China [4]Third Mil Med Univ, Inst Pathol, Chongqing 400038, Peoples R China [5]Southwest Hosp, Affiliated Hosp 1, Southwest Canc Ctr, Chongqing 400038, Peoples R China [6]Third Mil Med Univ, Army Med Univ, Sch Basic Med Sci, Chongqing 400038, Peoples R China [7]Third Mil Med Univ, Key Lab Tumor Immunopathol, Minist Educ, Chongqing 400038, Peoples R China [8]Guangdong Prov Key Lab Mol Tumor Pathol, Guangzhou 510515, Peoples R China [9]Guangzhou FQ PATHOTECH Co Ltd, Guangzhou 510515, Peoples R China [10]Guangzhou Huayin Hlth Med Grp Co Ltd, Guangzhou 510663, Peoples R China [11]ASTAR, Bioinformat Inst BII, Intelligent Digital & Mol Pathol IDMP Lab, Singapore 138671, Singapore [12]Zhengzhou Univ, Affiliated Hosp 1, Dept Pathol, 1 Jian She Dong Ave, Zhengzhou 450002, Peoples R China [13]Peking Univ, Dept Pathol, Shenzhen Hosp, Shenzhen 518036, Peoples R China [14]Fujian Med Univ, Fujian Canc Hosp, Dept Pathol, Clin Oncol Sch, Fuzhou 35000, Fujian, Peoples R China [15]Sichuan Univ, West China Hosp, Dept Pathol, Chengdu 610044, Peoples R China [16]Nantong Univ, Affiliated Hosp, Dept Pathol, Nantong 226007, Peoples R China [17]Nantong Univ, Med Sch, Nantong 226007, Peoples R China [18]Chongqing Inst Adv Pathol, Jinfeng Lab, Chongqing 400041, Peoples R China [19]Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Sch Med, Dept Pathol, Chengdu 610072, Peoples R China [20]ASTAR, Inst Mol & Cell Biol IMCB, Computat & Mol Pathol Lab CMPL, Singapore 138673, Singapore
出处:
ISSN:

关键词: artificial intelligence cytopathological diagnosis fine needle aspiration cytology (FNAC) thyroid nodules whole-slide image (WSI)

摘要:
The rising prevalence of thyroid nodules is straining limited cytopathology resources, resulting in excessive overdiagnosis and overtreatment with significant patient and healthcare consequences. To address this, AI-TFNA is developed, a robust artificial intelligence platform leveraging extensive clinical data to enhance diagnostic accuracy and clinical efficiency. A total of 20,803 thyroid samples are collected from seven medical centers across different regions in China. Of these, 4,421 thyroid fine-needle aspiration (TFNA) samples from three hospitals are used to train AI-TFNA, ensuring strong generalizability across diverse clinical settings. For the internal validation, AI-TFNA demonstrates exceptional performance: the overall accuracy of TBS I is 93.27%, the sensitivity of TBS V and TBS VI reaches 85.37% and 83.78%, while the specificity of TBS II is 97.13%. Consistent results are observed in an external cohort of 2,153 samples, demonstrating robust generalizability. The incorporation of BRAF mutation data into AI-TFNA and the development of a multi-modal model further improve precision by significantly improving the differentiation between benign and malignant thyroid nodules. Image Appearance Migration (IAM) is an innovative technique that substantially improves cross-institutional model generalizability, increasing AI-TFNA sensitivity by 1.90% and specificity by 8.12%. AI-TFNA offers rapid, reliable decision support, advancing thyroid nodule diagnostics.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 综合性期刊
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技
最新[2025]版:
大类 | 1 区 综合性期刊
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技
JCR分区:
出版当年[2024]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY
最新[2024]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Southern Med Univ, Nanfang Hosp, Dept Pathol, Guangzhou 510515, Peoples R China [2]Southern Med Univ, Sch Basic Med Sci, Guangzhou 510515, Peoples R China [3]Chongqing Univ, Coll Bioengn, Chongqing 400030, Peoples R China [4]Third Mil Med Univ, Inst Pathol, Chongqing 400038, Peoples R China [5]Southwest Hosp, Affiliated Hosp 1, Southwest Canc Ctr, Chongqing 400038, Peoples R China [6]Third Mil Med Univ, Army Med Univ, Sch Basic Med Sci, Chongqing 400038, Peoples R China [7]Third Mil Med Univ, Key Lab Tumor Immunopathol, Minist Educ, Chongqing 400038, Peoples R China [8]Guangdong Prov Key Lab Mol Tumor Pathol, Guangzhou 510515, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Southern Med Univ, Nanfang Hosp, Dept Pathol, Guangzhou 510515, Peoples R China [2]Southern Med Univ, Sch Basic Med Sci, Guangzhou 510515, Peoples R China [4]Third Mil Med Univ, Inst Pathol, Chongqing 400038, Peoples R China [5]Southwest Hosp, Affiliated Hosp 1, Southwest Canc Ctr, Chongqing 400038, Peoples R China [6]Third Mil Med Univ, Army Med Univ, Sch Basic Med Sci, Chongqing 400038, Peoples R China [7]Third Mil Med Univ, Key Lab Tumor Immunopathol, Minist Educ, Chongqing 400038, Peoples R China [9]Guangzhou FQ PATHOTECH Co Ltd, Guangzhou 510515, Peoples R China [11]ASTAR, Bioinformat Inst BII, Intelligent Digital & Mol Pathol IDMP Lab, Singapore 138671, Singapore [18]Chongqing Inst Adv Pathol, Jinfeng Lab, Chongqing 400041, Peoples R China [20]ASTAR, Inst Mol & Cell Biol IMCB, Computat & Mol Pathol Lab CMPL, Singapore 138673, Singapore
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:0 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号