高级检索
当前位置: 首页 > 详情页

Artificial Intelligence-Based Pathology to Assist Prediction of Neoadjuvant Therapy Responses for Breast Cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc, Sichuan Canc Ctr,Affiliated Canc Hosp,Dept Pathol, Chengdu, Peoples R China [2]Univ Elect Sci & Technol China, Sichuan Canc Ctr, Sch Med, Dept Breast Canc,Sichuan Canc Hosp & Inst, Chengdu, Peoples R China
出处:
ISSN:

关键词: artificial intelligence breast cancer neoadjuvant therapy pathology prediction

摘要:
BackgroundNeoadjuvant therapy (NAT) is a standard breast cancer treatment, but patient response varies significantly. Predictive markers can guide treatment decisions, yet their interpretation suffers from inter-pathologist variability due to breast cancer's complex histology and heterogeneity. Artificial intelligence (AI) applied to image-based omics offers potential to enhance pathological interpretation precision and consistency.MethodsThis review synthesizes existing literature on the application of AI in breast cancer pathology. We specifically focused on identifying and summarizing research that utilizes diverse histopathological features-including morphological characteristics, molecular markers, gene expression profiles, and multidimensional omics data-to predict NAT response in breast cancer patients.ResultsAI demonstrates significant capabilities in automatically recognizing histopathological patterns and predicting NAT efficacy. It shows promise as a tool for patient stratification in precision oncology. Research utilizing various pathological feature types (morphological, molecular, genomic, multi-omics) for NAT response prediction is actively evolving. While AI models integrating multi-omics features show potential, challenges remain in robustly predicting NAT outcomes.ConclusionAI-based pathology represents a prospective and powerful decision-support tool for predicting breast cancer NAT response. Despite existing challenges, particularly with complex multi-omics models, AI holds great potential to assist clinical oncologists in optimizing future cancer treatment management.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2024]版:
Q2 ONCOLOGY
最新[2024]版:
Q2 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc, Sichuan Canc Ctr,Affiliated Canc Hosp,Dept Pathol, Chengdu, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65768 今日访问量:2 总访问量:5150 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号