高级检索
当前位置: 首页 > 详情页

Histone lactylation facilitates MCM7 expression to maintain stemness and radio-resistance in hepatocellular carcinoma

文献详情

资源类型:
Pubmed体系:
机构: [1]Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [2]Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [3]Institute of Organ Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China [4]Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
出处:
ISSN:

关键词: Histone lactylation MCM7 Cancer stem cells Radio-resistance Hepatocellular carcinoma

摘要:
Cancer stem cells (CSCs) play an essential role in tumor initiation and therapy resistance. Histone lactylation as a novel epigenetic modification could regulate the gene transcription process during tumor progression. Nevertheless, researches have not well examined its role in maintaining CSC properties. Our study identified Minichromosome maintenance complex component 7 (MCM7) as a candidate gene in Hepatocellular carcinoma (HCC) with diagnostic and prognostic values, and Real-time quantitative PCR (qRT-PCR), Western blot (WB), and Immunohistochemistry (IHC) assays ascertained its obviously higher expressions in HCC cells and tissues. Ectopic of MCM7 could increase the expression of CSC-related genes and enhance spheroid both in size and in number. Suppression of MCM7 could strengthen the efficacy of radiotherapy verified by Cell counting kit-8 (CCK-8) and colony formation assays. The subcutaneous xenograft model indicated that suppression of MCM7 could inhibit CSC properties and the efficacy of radiotherapy in vivo. Mechanistically, histone lactylation could facilitate MCM7 expression, and both messenger RNA (mRNA) and protein level of MCM7 expression presented an obvious decrease due to 2-DG (glycolysis inhibitor) treatment and an obvious increase due to Rotenone (glycolysis activator) treatment. Rescue experiments verified that histone lactylation was necessary for MCM7 to promote CSC properties and radio-resistance in HCC. Arsenic trioxide (ATO) targeting MCM7 could inhibit the CSC phenotypes and enhance the efficacy of radiotherapy in vivo and in vitro. Collectively, histone lactylation could transcriptionally activate MCM7 to accelerate proliferation and radio-resistance through enhancing CSC properties. ATO targeting MCM7 could inhibit CSCs phenotypes and synergistically increase the efficacy of radiation therapy.Copyright © 2025 Elsevier Inc. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 2 区 药学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 药学
第一作者:
第一作者机构: [1]Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
共同第一作者:
通讯作者:
通讯机构: [2]Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China [3]Institute of Organ Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:56486 今日访问量:0 总访问量:4732 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号