高级检索
当前位置: 首页 > 详情页

HMRNet: High and Multi-Resolution Network With Bidirectional Feature Calibration for Brain Structure Segmentation in Radiotherapy

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China [2]Shanghai AI Lab, Shanghai 200030, Peoples R China [3]Univ Elect Sci & Technol China, Dept Radiat Oncol, Sichuan Canc Hosp & Inst, Chengdu 610042, Peoples R China [4]Sichuan Univ West China Hosp, West China Hosp SenseTime Joint Lab, West China Biomed Big Data Ctr, Chengdu 610041, Peoples R China
出处:
ISSN:

关键词: Image segmentation Three-dimensional displays Cancer Task analysis Biomedical imaging Tumors Shape Brain tumor anatomical brain barriers segmentation convolutional neural networks attention

摘要:
Accurate segmentation of Anatomical brain Barriers to Cancer spread (ABCs) plays an important role for automatic delineation of Clinical Target Volume (CTV) of brain tumors in radiotherapy. Despite that variants of U-Net are state-of-the-art segmentation models, they have limited performance when dealing with ABCs structures with various shapes and sizes, especially thin structures (e.g., the falx cerebri) that span only few slices. To deal with this problem, we propose a High and Multi-Resolution Network (HMRNet) that consists of a multi-scale feature learning branch and a high-resolution branch, which can maintain the high-resolution contextual information and extract more robust representations of anatomical structures with various scales. We further design a Bidirectional Feature Calibration (BFC) block to enable the two branches to generate spatial attention maps for mutual feature calibration. Considering the different sizes and positions of ABCs structures, our network was applied after a rough localization of each structure to obtain fine segmentation results. Experiments on the MICCAI 2020 ABCs challenge dataset showed that: 1) Our proposed two-stage segmentation strategy largely outperformed methods segmenting all the structures in just one stage; 2) The proposed HMRNet with two branches can maintain high-resolution representations and is effective to improve the performance on thin structures; 3) The proposed BFC block outperformed existing attention methods using monodirectional feature calibration. Our method won the second place of ABCs 2020 challenge and has a potential for more accurate and reasonable delineation of CTV of brain tumors.

基金:

基金编号: 81771921 61901084

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 计算机:跨学科应用 1 区 医学:信息 1 区 计算机:信息系统 1 区 数学与计算生物学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
通讯作者:
通讯机构: [1]Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China [2]Shanghai AI Lab, Shanghai 200030, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53094 今日访问量:0 总访问量:4588 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号