高级检索
当前位置: 首页 > 详情页

Energy-guided diffusion model for CBCT-to-CT synthesis

文献详情

资源类型:
Pubmed体系:
机构: [1]Chengdu Computer Application Institute Chinese Academy of Sciences, China [2]University of the Chinese Academy of Sciences, China [3]Sichuan University West China Hospital Department of Abdominal Oncology, China [4]Radiophysical Technology Center, Cancer Center, West China Hospital, Sichuan University, China
出处:
ISSN:

关键词: Diffusion model CBCT-to-CT synthesis Energy-guided function

摘要:
Cone Beam Computed Tomography (CBCT) plays a crucial role in Image-Guided Radiation Therapy (IGRT), providing essential assurance of accuracy in radiation treatment by monitoring changes in anatomical structures during the treatment process. However, CBCT images often face interference from scatter noise and artifacts, posing a significant challenge when relying solely on CBCT for precise dose calculation and accurate tissue localization. There is an urgent need to enhance the quality of CBCT images, enabling a more practical application in IGRT. This study introduces EGDiff, a novel framework based on the diffusion model, designed to address the challenges posed by scatter noise and artifacts in CBCT images. In our approach, we employ a forward diffusion process by adding Gaussian noise to CT images, followed by a reverse denoising process using ResUNet with an attention mechanism to predict noise intensity, ultimately synthesizing CBCT-to-CT images. Additionally, we design an energy-guided function to retain domain-independent features and discard domain-specific features during the denoising process, enhancing the effectiveness of CBCT-CT generation. We conduct numerous experiments on the thorax dataset and pancreas dataset. The results demonstrate that EGDiff performs better on the thoracic tumor dataset with SSIM of 0.850, MAE of 26.87 HU, PSNR of 19.83 dB, and NCC of 0.874. EGDiff outperforms SoTA CBCT-to-CT synthesis methods on the pancreas dataset with SSIM of 0.754, MAE of 32.19 HU, PSNR of 19.35 dB, and NCC of 0.846. By improving the accuracy and reliability of CBCT images, EGDiff can enhance the precision of radiation therapy, minimize radiation exposure to healthy tissues, and ultimately contribute to more effective and personalized cancer treatment strategies.Copyright © 2024 Elsevier Ltd. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 2 区 工程:生物医学 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 工程:生物医学 2 区 核医学
第一作者:
第一作者机构: [1]Chengdu Computer Application Institute Chinese Academy of Sciences, China [2]University of the Chinese Academy of Sciences, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:59494 今日访问量:0 总访问量:4869 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号