高级检索
当前位置: 首页 > 详情页

MRI radiomics signature to predict lymph node metastasis after neoadjuvant chemoradiation therapy in locally advanced rectal cancer

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China. [2]Department of Radiology, Affiliated Cancer Hospital of Medical School, University of Electronic Science and Technology of China, Sichuan Cancer Hospital, 55#Four Section of South Renmin Road, Wuhou District, Chengdu, 610000, China.
出处:
ISSN:

关键词: Rectal neoplasms  Difusion  Chemoradiotherapy  Lymph nodes

摘要:
To investigative the performance of MRI-radiomics analysis derived from T2WI and apparent diffusion coefficients (ADC) images before and after neoadjuvant chemoradiation therapy (nCRT) separately or simultaneously for predicting post-nCRT lymph node status in patients with locally advanced rectal cancer (LARC). MATERIALS AND METHODS: Eighty-three patients (training cohort, n = 57; validation cohort, n = 26) with LARC between June 2017 and December 2022 were retrospectively enrolled. All the radiomics features were extracted from volume of interest on T2WI and ADC images from baseline and post-nCRT MRI. Delta-radiomics features were defined as the difference between radiomics features before and after nCRT. Seven clinical-radiomics models were constructed by combining the most predictive radiomics signatures and clinical parameters selected from support vector machine. Receiver operating characteristic curve (ROC) was used to evaluate the performance of models. The optimum model-based LNM was applied to assess 5-years disease-free survival (DFS) using Kaplan-Meier analysis. The end point was clinical or radiological locoregional recurrence or distant metastasis during postoperative follow-up.Clinical-deltaADC radiomics combined model presented good performance for predicting post-CRT LNM in the training (AUC = 0.895,95%CI:0.838-0.953) and validation cohort (AUC = 0.900,95%CI:0.771-1.000). Clinical-deltaADC radiomics-postT2WI radiomics combined model also showed good performances (AUC = 0.913,95%CI:0.838-0.953) in the training and (AUC = 0.912,95%CI:0.771-1.000) validation cohort. As for subgroup analysis, clinical-deltaADC radiomics combined model showed good performance predicting LNM in ypT0-T2 (AUC = 0.827;95%CI:0.649-1.000) and ypT3-T4 stage (AUC = 0.934;95%CI:0.864-1.000). In ypT0-T2 stage, clinical-deltaADC radiomics combined model-based LNM could assess 5-years DFS (P = 0.030).Clinical-deltaADC radiomics combined model could predict post-nCRT LNM, and this combined model-based LNM was associated with 5-years DFS in ypT0-T2 stage.© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 核医学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Radiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32# Second Section of First Ring Road, Qingyang District, Chengdu, 610070, Sichuan, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:2 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号