高级检索
当前位置: 首页 > 详情页

Trehalose protects against cisplatin-induced cochlear hair cell damage by activating TFEB-mediated autophagy

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China [2]Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China [3]Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China [4]Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China [5]Department of Otorhinolaryngology-Head and Neck Surgery, ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Fudan University, China [6]Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
出处:
ISSN:

关键词: Ototoxicity Trehalose Cisplatin Autophagy Transcription factor EB (TFEB)

摘要:
Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors, but its side effects limit its application. Ototoxicity, a major adverse effect of cisplatin, causes irreversible sensorineural hearing loss. Unfortunately, there are no effective approaches to protect against this damage. Autophagy has been shown to exert beneficial effects in various diseases models. However, the role of autophagy in cisplatin-induced ototoxicity has been not well elucidated. In this study, we aimed to investigate whether the novel autophagy activator trehalose could prevent cisplatin-induced damage in the auditory cell line HEI-OC1 and mouse cochlear explants and to further explore its mechanisms. Our data demonstrated that trehalose alleviated cisplatin-induced hair cell (HC) damage by inhibiting apoptosis, attenuating oxidative stress and rescuing mitochondrial dysfunction. Additionally, trehalose significantly enhanced autophagy levels in HCs, and inhibiting autophagy with 3-methyladenine (3-MA) abolished these protective effects. Mechanistically, we showed that the effect of trehalose was attributed to increased nuclear translocation of transcription factor EB (TFEB), and this effect could be mimicked by TFEB overexpression and inhibited by TFEB gene silencing or treatment with cyclosporin A (CsA), a calcineurin inhibitor. Taken together, our findings suggest that trehalose and autophagy play a role in protecting against cisplatin-induced ototoxicity and that pharmacological enhancement of TFEB-mediated autophagy is a potential treatment for cisplatin-induced damage in cochlear HCs and HEI-OC1 cells.Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 药学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 药学
第一作者:
第一作者机构: [1]Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China [2]Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China [3]Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China [2]Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China [3]Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China [*1]600 Yishan Road, Shanghai 200233, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43389 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号