高级检索
当前位置: 首页 > 详情页

Cathepsin B-responsive and gadolinium-labeled branched glycopolymer-PTX conjugate-derived nanotheranostics for cancer treatment.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:领军期刊

机构: [1]Huaxi MR Research Center (HMRRC), Department of Neurosurgery, and Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China [2]Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu 610041, China [3]Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
出处:
ISSN:

关键词: Stimuli-responsive Drug delivery Branched glycopolymers Biodegradability Nanomedicine Theranostics

摘要:
Multi-modal therapeutics are emerging for simultaneous diagnosis and treatment of cancer. Polymeric carriers are often employed for loading multiple drugs due to their versatility and controlled release of these drugs in response to a tumor specific microenvironment. A theranostic nanomedicine was designed and prepared by complexing a small gadolinium chelate, conjugating a chemotherapeutic drug PTX through a cathepsin B-responsive linker and covalently bonding a fluorescent probe pheophorbide a (Ppa) with a branched glycopolymer. The branched prodrug-based nanosystem was degradable in the tumor microenvironment with overexpressed cathepsin B, and PTX was simultaneously released to exert its therapeutic effect. The theranostic nanomedicine, branched glycopolymer-PTX-DOTA-Gd, had an extended circulation time, enhanced accumulation in tumors, and excellent biocompatibility with significantly reduced gadolinium ion (Gd3+) retention after 96 h post-injection. Enhanced imaging contrast up to 24 h post-injection and excellent antitumor efficacy with a tumor inhibition rate more than 90% were achieved from glycopolymer-PTX-DOTA-Gd without obvious systematic toxicity. This branched polymeric prodrug-based nanomedicine is very promising for safe and effective diagnosis and treatment of cancer. © 2021 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 化学
小类 | 1 区 药学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 药学
第一作者:
第一作者机构: [1]Huaxi MR Research Center (HMRRC), Department of Neurosurgery, and Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43378 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号