高级检索
当前位置: 首页 > 详情页

Automatic Liver Segmentation in CT Volumes with Improved 3D U-net

| 导出 | |

文献详情

资源类型:
WOS体系:

收录情况: ◇ CPCI(ISTP)

机构: [1]4th Fl, Shuangqing Tower Building #2, #77 Shuangqing Road, Haidian District, Beijing [2]Sichuan Cancer Hospital & Institute No.55, Section 4, South Renmin Road,Chengdu, China
出处:

关键词: Liver Segmentation 3D U-net Dilated Convolution Separable Convolution Post-Processing

摘要:
Automatic liver segmentation is a crucial prerequisite yet challenging task for computer-aided hepatic disease diagnosis and treatment. In this paper, we implemented an improved 3D U-net[1] architecture, which achieves a more precise segmentation effect. The proposed 3D U-net takes advantage of dilated convolution [2] that extracts multi-scale feature information and separable convolution[3] that achieve separation of cross-channel correlation and spatial correlation. In addition to the skip concatenation of the down-sampling feature and the up-sampling feature, we add skip concatenation at intervals of two convolution layers during the down-sampling process. The improved 3D U-net produces high-quality segmentation result of liver in CT scans. We also used a post-processing based on liver feature information in CT to optimize the segmentation.

基金:
语种:
被引次数:
WOS:
第一作者:
第一作者机构: [1]4th Fl, Shuangqing Tower Building #2, #77 Shuangqing Road, Haidian District, Beijing
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号