高级检索
当前位置: 首页 > 详情页

Development of a deep learning model for guiding treatment decisions of acute variceal bleeding in patients with cirrhosis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Southeast Univ, Liver Dis Ctr Integrated Tradit Chinese & Western, Nurturing Ctr Jiangsu Prov State Lab AI Imaging &, Zhongda Hosp,Dept Radiol,Med Sch, 87 Dingjiaqiao, Nanjing 210009, Jiangsu Provinc, Peoples R China [2]Southeast Univ, Zhongda Hosp, Basic Med Res & Innovat Ctr, Minist Educ,State Key Lab Digital Med Engn, Nanjing 210009, Jiangsu Provinc, Peoples R China [3]Gannan Med Univ, Affiliated Hosp 1, Ganzhou 341000, Jiangxi Provinc, Peoples R China [4]Nanjing Med Univ, Engn Res Ctr Intelligent Theranost Technol & Instr, Sch Biomed Engn & Informat, Minist Educ, Nanjing 211166, Jiangsu Provinc, Peoples R China [5]Xuzhou Med Univ, Affiliated Hosp, Dept Med Equipment Management, Artificial Intelligence Unit, Xuzhou 221006, Jiangsu Provinc, Peoples R China [6]China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu Provinc, Peoples R China [7]Sun Yat Sen Univ, Affiliated Hosp 3, Dept Gastroenterol, Guangzhou 510630, Guangdong, Peoples R China [8]Suining Cent Hosp, Dept Gastroenterol, Suining 629000, Sichuan Provinc, Peoples R China [9]Hubei Univ Med, Taihe Hosp, Hubei Prov Clin Res Ctr Precise Diag & Treatment L, Dept Infect Dis, Shiyan 442000, Hubei Province, Peoples R China [10]Ningxia Med Univ, Peoples Hosp Ningxia Hui Autonomous Reg, Affiliated Peoples Hosp Autonomous Reg, Yinchuan 750004, Ningxia Hui Aut, Peoples R China [11]Beijing Daxing Dist Peoples Hosp, Dept Digest Syst, Beijing 102600, Peoples R China [12]Fifth Med Ctr PLA Gen Hosp, Diag & Treatment Ctr, Beijing 100039, Peoples R China [13]Tianjin Third Cent Hosp, Inst Hepatobiliary Dis, Dept Gastroenterol & Hepatol, Tianjin Key Lab Extracorporeal Life Support Crit D, Tianjin 300170, Peoples R China [14]Sixth Peoples Hosp Shenyang, CHESS Ctr, Shenyang 110006, Liaoning, Peoples R China [15]Shanxi Bethune Hosp, Dept Gastroenterol, Taiyuan 030032, Shanxi Province, Peoples R China [16]Inner Mongolia Univ Sci & technol, Affiliated Hosp 2, Inner Mongolia Inst Digest Dis, Baotou Med Coll, Baotou 014010, Inner Mongolia, Peoples R China [17]Peoples Hosp, Nanning 530021, Guangxi Zhuang, Peoples R China [18]Linyi Peoples Hosp, Dept Gastroenterol, Linyi 276003, Shandong Provin, Peoples R China [19]Zhejiang Univ, Sir Run Run Shaw Hosp, Sch Med, Dept Gastroenterol, Hangzhou 310016, Zhejiang Provin, Peoples R China [20]Chongqing Univ, Dept Gastroenterol, Fuling Hosp, Chongqing 408000, Peoples R China [21]Tianjin Second Peoples Hosp, Dept Gastroenterol & Hepatol, Tianjin 300192, Peoples R China [22]Xian GaoXin Hosp, Dept Gastroenterol, Xian 710075, Shaanxi Provinc, Peoples R China [23]Nanjing Med Univ, Affiliated Hosp 1, Dept Gastroenterol, Nanjing 210029, Jiangsu Provinc, Peoples R China [24]Qingdao Univ, Dept Gastroenterol, Affiliated Hosp, Qingdao 266003, Shandong Provin, Peoples R China [25]Guangzhou Med Univ, Huizhou Peoples Hosp 3, Dept Emergency, Huizhou 516000, Guangdong Provi, Peoples R China [26]Maoming Peoples Hosp, Dept Gastroenterol, Maoming 525000, Guangdong Provi, Peoples R China [27]Southwest Med Univ, Affiliated Hosp, Dept Gastroenterol, Luzhou 646000, Sichuan Provinc, Peoples R China [28]Anhui Med Univ, Hosp 2, Dept Gastroenterol & Hepatol, Hefei 230601, Anhui Province, Peoples R China [29]Dalian Sixth Peoples Hosp, Dept Hepatol, Dalian 116031, Liaoning Provin, Peoples R China [30]Chongqing Med Univ, Affiliated Hosp 2, Dept Gastroenterol, Chongqing 400010, Peoples R China [31]Ankang Cent Hosp, Endoscop Ctr, Dept Gastroenterol, Ankang 725000, Shaanxi Provinc, Peoples R China [32]Zhejiang Univ, Affiliated Hosp 5, Lishui Cent Hosp,Wenzhou Med Univ, Dept Gastroenterol,Lishui Hosp, Lishui 323000, Zhejiang Provin, Peoples R China [33]Wenzhou Med Univ, Affiliated Hosp 1, Dept Gastroenterol, Wenzhou 325000, Zhejiang Provin, Peoples R China [34]Third Peoples Hosp Zhenjiang, Dept Liver Dis, Zhenjiang 212000, Jiangsu Provinc, Peoples R China [35]Zhejiang Univ, Sch Med, Affiliated Jinhua Hosp, Dept Gastroenterol, Jinhua 321000, Zhejiang Provin, Peoples R China [36]First Peoples Hosp Yinchuan City, Dept Gastroenterol, Yinchuan 750001, Ningxia Hui Aut, Peoples R China [37]Gen Hosp Western Theater Command, Dept Gastroenterol, Chengdu 610000, Sichuan Provinc, Peoples R China [38]Zunyi Med Univ, Affiliated Zhuhai Hosp 5, Dept Gastroenterol & Endoscopy, Zhuhai 519100, Guangdong Provi, Peoples R China [39]Shannan Peoples Hosp, Dept Gastroenterol, Shannan 856000, Tibet Autonomou, Peoples R China [40]Capital Med Univ, Beijing Youan Hosp, Ctr Hepatol & Gastroenterol, Beijing 100069, Peoples R China [41]First Hosp Lanzhou Univ, Dept Gastroenterol, Lanzhou 730000, Gansu Province, Peoples R China [42]Peoples Hosp Ningxia Hui Autonomous Reg, Dept Hepatobiliary Surg, Yinchuan 750000, Ningxia Hui Aut, Peoples R China [43]Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Gastroenterol, Wuhan 430030, Hubei Province, Peoples R China [44]Baoding Peoples Hosp, Dept Hepatol, Baoding 071000, Hebei Province, Peoples R China [45]Xuzhou Med Univ, Affiliated Hosp, Clin Res Inst, Xuzhou 221006, Jiangsu Provinc, Peoples R China
出处:
ISSN:

关键词: Acute variceal bleeding Liver cirrhosis Deep learning Risk stratification Endoscopic therapy Preemptive transjugular intrahepatic portosystemic shunt

摘要:
BACKGROUND Acute variceal bleeding (AVB) in patients with cirrhosis remains life-threatening; moreover, the current risk stratification methods have certain limitations. Rebleeding and mortality after AVB remain major challenges. Although preemptive transjugular intrahepatic portosystemic shunt (p-TIPS) can improve outcomes, not all patients benefit equally. Accurate risk stratification is needed to guide treatment decisions and identify those most likely to benefit from p-TIPS. AIM To develop an artificial intelligence (AI)-driven model to guide AVB treatment decisions, and identify candidates eligible for p-TIPS. METHODS Patients with cirrhosis and AVB, from two multicenter retrospective cohorts in China, who received endoscopic variceal ligation plus pharmacotherapy (n = 1227) or p-TIPS (n = 1863) were included. Baseline data within 24 hours of hospital admission were obtained. The AI-AVB model, based on the six-week failure and one-year mortality rates, was developed to predict treatment efficacy and compared with standard risk scores. Outcomes and adverse events of the treatments were compared across the high- and low-risk subgroups stratified using the AI-AVB model. RESULTS The AI-AVB model demonstrated superior predictive performance compared to traditional risk stratification methods. In the internal validation cohort, the model achieved an area under the curve (AUC) of 0.842 for predicting six-week treatment failure and 0.954 for one-year mortality. In the external validation cohort, the AUCs were 0.814 and 0.889, respectively. The model effectively identified patients at high risk of first-line treatment failure who may benefit from aggressive interventions such as p-TIPS. In contrast, advancing the treatment strategy for low-risk patients did not notably improve the short-term prognosis. CONCLUSION The AI-AVB model can predict treatment outcomes, stratify the failure risk in cirrhotic patients with AVB, aid in clinical decisions, identify p-TIPS beneficiaries, and optimize personalized treatment strategies.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 4 区 胃肠肝病学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 胃肠肝病学
JCR分区:
出版当年[2024]版:
Q1 GASTROENTEROLOGY & HEPATOLOGY
最新[2024]版:
Q1 GASTROENTEROLOGY & HEPATOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Southeast Univ, Liver Dis Ctr Integrated Tradit Chinese & Western, Nurturing Ctr Jiangsu Prov State Lab AI Imaging &, Zhongda Hosp,Dept Radiol,Med Sch, 87 Dingjiaqiao, Nanjing 210009, Jiangsu Provinc, Peoples R China [2]Southeast Univ, Zhongda Hosp, Basic Med Res & Innovat Ctr, Minist Educ,State Key Lab Digital Med Engn, Nanjing 210009, Jiangsu Provinc, Peoples R China [3]Gannan Med Univ, Affiliated Hosp 1, Ganzhou 341000, Jiangxi Provinc, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65768 今日访问量:2 总访问量:5150 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号