高级检索
当前位置: 首页 > 详情页

Multimodal deep learning approaches for precision oncology: a comprehensive review

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Chengdian Rd, Quzhou 324000, Zhejiang, Peoples R China [2]Zhengzhou Univ, Affiliated Hosp 1, Dept Pathol, Jianshe Dong Rd, Zhengzhou 450052, Henan, Peoples R China [3]Xiamen Univ Technol, Sch Optoelect & Commun Engn, Ligong Rd, Xiamen 361024, Fujian, Peoples R China [4]Henan Univ, Sch Comp & Informat Engn, Jinming Ave, Kaifeng 475001, Henan, Peoples R China [5]Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Sect 2,North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China [6]Capital Med Univ, Xuanwu Hosp, Dept Nephrol, Changchun St, Beijing 100053, Peoples R China
出处:
ISSN:

关键词: multimodal deep learning cancer integration

摘要:
The burgeoning accumulation of large-scale biomedical data in oncology, alongside significant strides in deep learning (DL) technologies, has established multimodal DL (MDL) as a cornerstone of precision oncology. This review provides an overview of MDL applications in this field, based on an extensive literature survey. In total, 651 articles published before September 2024 are included. We first outline publicly available multimodal datasets that support cancer research. Then, we discuss key DL training methods, data representation techniques, and fusion strategies for integrating multimodal data. The review also examines MDL applications in tumor segmentation, detection, diagnosis, prognosis, treatment selection, and therapy response monitoring. Finally, we critically assess the limitations of current approaches and propose directions for future research. By synthesizing current progress and identifying challenges, this review aims to guide future efforts in leveraging MDL to advance precision oncology.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 2 区 生物学
小类 | 1 区 生化研究方法 1 区 数学与计算生物学
JCR分区:
出版当年[2025]版:
最新[2023]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Chengdian Rd, Quzhou 324000, Zhejiang, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Quzhou, Chengdian Rd, Quzhou 324000, Zhejiang, Peoples R China [5]Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Sect 2,North Jianshe Rd, Chengdu 610054, Sichuan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:54678 今日访问量:0 总访问量:4645 更新日期:2025-03-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号