高级检索
当前位置: 首页 > 详情页

Deep Learning-Based Automatic Dose Optimization of Brachytherapy

| 认领 | 导出 |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Chengdu Univ Technol, Appl Nucl Technol Geosci Key Lab Sichuan Prov, Chengdu 610059, Peoples R China [2]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Canc Ctr, Sch Med,Radiat Oncol Key Lab Sichuan Prov, Chengdu 610041, Peoples R China [3]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Res Inst, Chengdu, Peoples R China
出处:
ISSN:

摘要:
Purpose/Objective(s): Needle reconstruction is a crucial step in intracavitary-interstitial brachytherapy (IC-ISBT). Currently, needle reconstruction relies on manual processes, which are time-consuming and prone to errors. Automated segmentation and reconstruction methods for interstitial needles can potentially improve efficiency and reduce clinical workload. The objective of this study is to utilize existing radiation therapy plans to achieve deep learning-based reconstruction of interstitial needles in computed tomography (CT) images of cervical cancer brachytherapy.

语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学 2 区 核医学
最新[2025]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学 2 区 核医学
JCR分区:
出版当年[2024]版:
Q1 ONCOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2024]版:
Q1 ONCOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Chengdu Univ Technol, Appl Nucl Technol Geosci Key Lab Sichuan Prov, Chengdu 610059, Peoples R China [2]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Canc Ctr, Sch Med,Radiat Oncol Key Lab Sichuan Prov, Chengdu 610041, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:0 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号