高级检索
当前位置: 首页 > 详情页

Interpretable AI-assisted diagnosis of papillary thyroid cancer cytopathology using graph neural networks and knowledge graphs

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. [2]Department of Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China. [3]West China Clinical Medical College of Sichuan University, Chengdu 610041, Sichuan, China. [4]Department of Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Institute of Clinical Pathology, Sichuan University, Chengdu 610041, Sichuan, China. [5]Sichuan KgCure Co., Ltd., Sichuan University, Chengdu 610041, Sichuan, China.
出处:

关键词: Papillary thyroid cancer Fine needle aspiration Cytology Artificial intelligence Graph neural networks Knowledge graph Interpretable artificial intelligence

摘要:
This study presents an interpretable AI-assisted diagnostic approach for papillary thyroid carcinoma (PTC) cytopathology by combining graph neural networks (GNNs) with knowledge graphs (KGs). Routine cytology smears from 281 PTC cases were scanned, labeled, and processed using the Cascade RCNN model to detect pathological cell features, including 45,680 ground-glass nuclei, 712 nuclear grooves, and 116 intranuclear inclusions. By integrating GNNs, the model achieved a mean intersection over union (mIoU) of 56.14% and a mean average precision (mAP) of 0.87. The GINet model further improved classification accuracy to 88.84%. Our approach also incorporates a clinical decision support system (CDSS) for querying KGs, providing explainable diagnostic outputs. This method offers an interpretable and reliable AI tool for PTC diagnosis, enhancing the transparency of AI-assisted pathology systems.© 2025. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
第一作者:
第一作者机构: [1]Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. [2]Department of Pathology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65773 今日访问量:3 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号