高级检索
当前位置: 首页 > 详情页

Interpretable machine learning-guided single-cell mapping deciphers multi-lineage pancreatic dysregulation in type 2 diabetes

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Ctr, Sch Life Sci & Technol, Dept Clin Lab,Sichuan Clin Res Ctr Canc,Sichuan Ca, Chengdu 610054, Peoples R China [2]Nanyang Technol Univ, Sch Biol Sci, Singapore 639798, Singapore [3]Chengdu Univ, Clin Med Coll, Clin Genet Lab, Chengdu 610106, Peoples R China [4]Chengdu Univ, Affiliated Hosp, Chengdu 610106, Peoples R China
出处:
ISSN:

关键词: Pancreatic cellular heterogeneity Single-cell transcriptomics Machine learning Type 2 diabetes Stellate cell activation Beta cell dysfunction

摘要:
Background Pancreatic cellular heterogeneity is fundamental to systemic metabolic regulation, yet its pathological remodeling in diabetes remains poorly characterized. Methods We integrated single-cell RNA sequencing with machine learning frameworks to decode pancreatic heterogeneity. Novel tools included PanSubPred (two-stage feature selection/XGBoost classifier) for multi-lineage annotation and PSC-Stat (XGBoost/Gini optimization) for stellate cell activation analysis. Results By establishing PanSubPred, we systematically decoded pancreatic cellular diversity, identifying 64 cell-type-specific markers (38 novel) that maintained cross-dataset accuracy (AUC > 0.970) even after excluding known canonical markers. Building on this annotation precision, we developed PSC-Stat to quantify stellate cell activation dynamics, revealing their progressive activation from diabetes to pancreatic cancer (activated/quiescent ratio: control: 1.44 +/- 1.02, diabetes: 4.72 +/- 4.01, pancreatic cancer: 18.67 +/- 18.70). Diabetes reorganized intercellular communication into ductal-centric hubs via FGF7-FGFR2/3, EFNB3-EPHB2/4/6 and EFNA5-EPHA2 axes, from which we derived a 15-gene signature for diabetic ductal cells (AUC = 0.846). Beta cell heterogeneity analysis uncovered diabetes-associated depletion of mature insulin-secretory clusters (INS + NKX6-1+), expansion of immature (CD81 + RBP4+) and endoplasmic reticulum stress-adapted subtypes (DDIT3 + HSPA5+). Moreover, non-beta lineages exhibited parallel dysfunction: acinar cells shifted toward inflammatory states (CCL2 + CXCL17+), while ductal cells adopted secretory phenotypes (MUC1 + CFTR+). Conclusions This study presents a machine learning-based single-cell framework that systematically maps pancreatic cellular alterations in diabetes. The identified novel signatures, stellate activation dynamics, and beta cell maturation trajectories may serve as potential targets for diabetic management and pancreatic cancer risk stratification.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 1 区 内分泌学与代谢 2 区 心脏和心血管系统
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 内分泌学与代谢 2 区 心脏和心血管系统
JCR分区:
出版当年[2024]版:
Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Q1 ENDOCRINOLOGY & METABOLISM
最新[2024]版:
Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Q1 ENDOCRINOLOGY & METABOLISM

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Ctr, Sch Life Sci & Technol, Dept Clin Lab,Sichuan Clin Res Ctr Canc,Sichuan Ca, Chengdu 610054, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65772 今日访问量:3 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号