高级检索
当前位置: 首页 > 详情页

Lymph node metastasis in patients with hepatocellular carcinoma using machine learning: a population-based study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Jinan Cent Hosp, Dept Obstet & Gynecol, Jinan, Peoples R China [2]Southwest Med Univ, Sch Clin Med, Luzhou, Sichuan, Peoples R China [3]Southwest Med Univ, Affiliated Tradit Chinese Med Hosp, Dept Anesthesiol, Luzhou, Peoples R China [4]Luzhou Key Lab Res Integrat Pain & Perioperat Orga, Luzhou, Peoples R China [5]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Dept Hlth Management Ctr, Sichuan Clin Res Ctr Canc, Chengdu, Peoples R China [6]Southwest Med Univ, Affiliated Hosp, Clin Res Inst, Luzhou, Peoples R China [7]Dezhou Peoples Hosp, Dept Resp Med, Dezhou, Shandong, Peoples R China
出处:
ISSN:

关键词: hepatocellular carcinoma machine learning predictive model lymph node metastasis logistic regression

摘要:
Aim This study aims to develo\p a population-adapted machine learning-based prediction model for hepatocellular carcinoma (HCC) lymph node metastasis (LNM) to identify high-risk patients requiring intensive surveillance.Methods Data from 23511 HCC patients in the SEER database and 57 patients from our hospital were analyzed. Seven LNM risk indicators were selected. Four machine learning algorithms-decision tree (DT), logistic Regression (LR), multilayer perceptron (MLP), and extreme gradient boosting (XGBoost)-were employed to construct prediction models. Model performance was evaluated using area under the curve, accuracy, sensitivity, and specificity.Results Among 23511 SEER patients, 1679 (7.14%) exhibited LNM. Race, Sequence number, Tumor size, T stage and AFP were identified as independent predictors of LNM. The LR model achieved optimal performance (area under the curve: 0.751; accuracy: 0.707; sensitivity: 0.711; specificity: 0.661). External validation with 57 patients from our hospital confirmed robust generalizability (area under the curve: 0.73; accuracy: 0.737; sensitivity: 0.829; specificity: 0.5), outperforming other models.Conclusions The LR-based model demonstrates superior predictive capability for LNM in HCC, offering clinicians a valuable tool to guide personalized therapeutic strategies.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2024]版:
Q2 ONCOLOGY
最新[2024]版:
Q2 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Jinan Cent Hosp, Dept Obstet & Gynecol, Jinan, Peoples R China [2]Southwest Med Univ, Sch Clin Med, Luzhou, Sichuan, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:0 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号