高级检索
当前位置: 首页 > 详情页

Real-time formaldehyde and acetaldehyde sensor using a 5.72 μm QCL for multi-gas characterization lung cancer screening

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]China Univ Petr East China, Coll Control Sci & Engn, Shandong Prov Engn Res Ctr Intelligent Sensing & M, Qingdao 266580, Peoples R China [2]Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China [3]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Canc Ctr, Div Thorac Surg,Sch Med, Chengdu 610041, Peoples R China
出处:
ISSN:

关键词: Formaldehyde Acetaldehyde QCL ICEEMDAN GWO-BiLSTM Random forest

摘要:
Lung cancer screening is a challenging issue. To address the poor classification capacity of single volatile organic compounds (VOCs), we analyzed detection methods for formaldehyde (CH2O) and acetaldehyde (C2H4O), and integrated approaches from previous studies to detect other VOCs, collectively constructing a multi-gas characteristic classification model for lung cancer. Detection of CH2O and C2H4O involved using wavelength modulation spectroscopy (WMS) to detect expired gas. We utilized Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) model and Grey Wolf Optimizer-Bidirectional Long ShortTerm Memory (GWO-BiLSTM) model to denoise signals and invert concentrations, achieving improved sensor performance. The Signal-to-Noise Ratio (SNR) of the system was improved by 26.34 dB, and Root Mean Square Error (RMSE) of CH2O and C2H4O were 0.691 ppb and 0.451 ppb, respectively. The classification model based on random forest (RF) demonstrated a sensitivity of 83.3 % and a specificity of 87.5 %, indicating that this expired gas screening method has the potential to become one of the early screening approaches for lung cancer.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:综合 2 区 仪器仪表
最新[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:综合 2 区 仪器仪表
JCR分区:
出版当年[2024]版:
Q1 ENGINEERING, MULTIDISCIPLINARY Q1 INSTRUMENTS & INSTRUMENTATION
最新[2024]版:
Q1 ENGINEERING, MULTIDISCIPLINARY Q1 INSTRUMENTS & INSTRUMENTATION

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]China Univ Petr East China, Coll Control Sci & Engn, Shandong Prov Engn Res Ctr Intelligent Sensing & M, Qingdao 266580, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65768 今日访问量:2 总访问量:5150 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号