高级检索
当前位置: 首页 > 详情页

Fluorinated polyethyleneimine vectors with serum resistance and adjuvant effect to deliver LMP2 mRNA vaccine for nasopharyngeal carcinoma therapy

文献详情

资源类型:
Pubmed体系:
机构: [1]State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, PR China [2]Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China [3]Department of Critical Care Medicine and Department of Biotherapy, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China [4]MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, PR China
出处:
ISSN:

关键词: mRNA vaccine Nasopharyngeal carcinoma Gene delivery Fluorinated polyethyleneimine

摘要:
Latent membrane protein 2 (LMP2), which is an important protein of Epstein-Barr virus (EBV) in the latent phase to mediate metastasis and recurrence, has shown great potential as a targeting antigen in mRNA vaccine for nasopharyngeal carcinoma (NPC) therapy. In this study, an LMP2 mRNA vaccine was developed based on a serum-resistant fluorinated polyethyleneimine (TKPF) with the self-adjuvant effect for achieving a strong anti-tumor immunity in NPC treatment. Specifically, the proposed vaccine PEG[TKPF/mLMP2] was comprised of a TKPF/mLMP2 core formed by the cationic TKPF and LMP2 mRNA, together with a dialdehyde poly (ethyl glycol) (OHC-PEG-CHO) coating. PEG[TKPF/mLMP2] showed less protein absorption to enable serum resistance to maintain ∼50 % transfection efficiency under 50 % FBS media. In addition, PEG[TKPF/mLMP2] could render enhanced internalization and lysosomal escape of mRNA by DC cells via positive charge and fluorine groups, followed by efficient transfection and expression, eventually triggering DC maturation and antigen presentation to T cells as demonstrated by in vitro studies. The activated antigen-specific T cells would attack tumor cells expressing LMP2 and release pro-inflammatory cytokines including IFN-γ, IL-6, and TNF-α. Furthermore, in vivo studies manifested effective spleen transfection and activated T cells by PEG[TKPF/mLMP2] to prevent tumor cell growth and prolong mouse survival in both prophylactical and therapeutical models. Notably, PEG[TKPF] revealed self-adjuvant effect to induce a strong immune response for boosting the anti-tumor potency of LMP2 mRNA. In summary, the fabricated LMP2 mRNA vaccine facilitated by the efficient and self-adjuvant vector induced robust immunotherapeutic efficacy, providing a possible solution for NPC therapy. STATEMENT OF SIGNIFICANCE: Latent membrane protein 2 (LMP2), which is a key Epstein-Barr virus (EBV) protein for metastasis and recurrence, can be targeted as an antigen for mRNA vaccine development to treat nasopharyngeal carcinoma (NPC). However, the current LMP2 vaccine is still inefficient in inducing potent anti-NPC immunity. Although mRNA has emerged as an effective tool to rejuvenate LMP2 vaccine development, it still suffers from vulnerability to serum conditions and weak immune response. In this study, we developed an LMP2 mRNA vaccine based on a serum-resistant fluorinated polyethyleneimine (TKPF) with self-adjuvant effects to achieve strong anti-tumor immunity in NPC treatment. The proposed PEG[TKPF/mLMP2] vaccine efficiently delivers to dendritic cells (DCs) for activating T cell maturation, ultimately suppressing the growth of LMP2-expressing tumors in both prophylactic and therapeutic mouse models.Copyright © 2024. Published by Elsevier Ltd.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
第一作者:
第一作者机构: [1]State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, PR China [2]Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
通讯作者:
通讯机构: [1]State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, PR China [4]MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, PR China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号