高级检索
当前位置: 首页 > 详情页

Deformable dose prediction network based on hybrid 2D and 3D convolution for nasopharyngeal carcinoma radiotherapy

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Chengdu Univ Technol, Coll Mech & Elect Engn, Chengdu 610059, Peoples R China [2]Sichuan Canc Hosp, Chengdu 610041, Sichuan, Peoples R China
出处:
ISSN:

关键词: Dose prediction Deformable convolution Radiotherapy Deep learning

摘要:
Radiotherapy is recognized as the primary treatment for nasopharyngeal carcinoma (NPC). Rapid and accurate dose prediction is crucial for enhancing the quality and efficiency of radiotherapy planning. However, the current dose prediction model based on 2D architecture cannot effectively learn the spatial information among slices. Although some studies have explored the incorporation of interslice features through 3D architecture, the resolution properties of medical image anisotropy significantly limit the predictive performance. To address the issues, we propose a novel deformable dose prediction network based on hybrid 2D and 3D convolution for NPC radiotherapy. Specifically, the proposed model innovatively incorporates a 2.5D architecture based on hybrid 2D and 3D convolution, and effectively utilizes the directional information within anisotropic resolutions to achieve cross-scale feature extraction. Additionally, deformable convolution is introduced into the model to enhance the receptive field and effectively handle multi-scale spatial transformations. To improve channel correlation and reduce redundant features, we design a Residual Deformable Squeeze-and-Excitation Module. We conduct extensive experiments on an internal dataset, and the results show that the proposed model outperforms other existing methods in most dosimetric criteria. The proposed model has superior dose prediction performance in NPC radiotherapy, and has important clinical significance for assisting physicists to optimize the treatment plan and improve standardization of radiotherapy planning. The source code is available at https://github.com/CDUTJ102/2.5D-Deformable-UNet.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 4 区 医学
小类 | 2 区 数学与计算生物学 4 区 计算机:跨学科应用 4 区 工程:生物医学 4 区 医学:信息
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q3 ENGINEERING, BIOMEDICAL Q3 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Chengdu Univ Technol, Coll Mech & Elect Engn, Chengdu 610059, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:2 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号