高级检索
当前位置: 首页 > 详情页

Glycolysis and chemoresistance in acute myeloid leukemia

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Neonatology, Zigong Maternity and Child Health Care Hospital, Zigong, Sichuan, 643000, China. [2]Department of Psychiatry, The Zigong Affiliated Hospital of Southwest Medical University, Zigong mental health Center, Zigong Institute of Brain Science, Zigong, Sichuan, 643000, China. [3]Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China. [4]The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China.
出处:
ISSN:

关键词: Chemoresistance Acute myeloid leukemia Glycolysis

摘要:
While traditional high-dose chemotherapy can effectively prolong the overall survival of acute myeloid leukemia (AML) patients and contribute to better prognostic outcomes, the advent of chemoresistance is a persistent challenge to effective AML management in the clinic. The therapeutic resistance is thought to emerge owing to the heterogeneous and adaptable nature of tumor cells when exposed to exogenous stimuli. Recent studies have focused on exploring metabolic changes that may afford novel opportunities to treat AML, with a particular focus on glycolytic metabolism. The Warburg effect, a hallmark of cancer, refers to metabolism of glucose through glycolysis under normoxic conditions, which contributes to the development of chemoresistance. Despite the key significance of this metabolic process in the context of malignant transformation, the underlying molecular mechanisms linking glycolysis to chemoresistance in AML remain incompletely understood. This review offers an overview of the current status of research focused on the relationship between glycolytic metabolism and AML resistance to chemotherapy, with a particular focus on the contributions of glucose transporters, key glycolytic enzymes, signaling pathways, non-coding RNAs, and the tumor microenvironment to this relationship. Together, this article will provide a foundation for the selection of novel therapeutic targets and the formulation of new approaches to treating AML.© 2024 The Authors.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
第一作者:
第一作者机构: [1]Department of Neonatology, Zigong Maternity and Child Health Care Hospital, Zigong, Sichuan, 643000, China.
通讯作者:
通讯机构: [3]Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China. [4]The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250000, China. [*1]Department of Pediatrics (Children Hematological Oncology), Birth Defects and Childhood Hematological Oncology Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43377 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号