高级检索
当前位置: 首页 > 详情页

An automatic segmentation framework of quasi-periodic time series through graph structure

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Southwest Petr Univ, Sch Comp Sci, Chengdu 610500, Peoples R China [2]Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu 610054, Peoples R China [3]Inst Elect & Informat Ind Technol Kash, Silk Rd Talent Bldg,Shenka Ave, Kash 844000, Xinjiang, Peoples R China [4]AECC Sichuan Gas Turbine Estab, Mianyang 621700, Peoples R China [5]Sichuan Canc Hosp, Chengdu 610000, Peoples R China [6]Inst Radiat Oncol, Key Lab Sichuan Prov, Chengdu 610000, Peoples R China [7]Jackson State Univ, Dept Chem Phys & Atmospher Sci, Jackson, MS 39217 USA
出处:
ISSN:

关键词: Quasi-periodic time series Automatic segmentation Clustering K-means Mean silhouette value

摘要:
The segmentation of quasi-periodic time series (QTS) is crucial for modeling analysis in industrial and medical fields. However, it is challenging to automatically and effectively split different types of QTSs under the same settings. To address this issue, we propose an enhanced graph-based QTS automatic segmentation (EGQAS) framework that integrates an enhanced graph structure and hybrid clustering. The enhanced graph structure improves the stability of QTS segmentation, especially for a large number of QTS, by using edge weight filtering and aggregation. Hybrid clustering, which consists of hierarchical clustering and a modified k-means algorithm, removes clusters with outliers and incomplete divisions to improve the integrity of the final QTS split points. For four different types of public datasets, EGQAS outperforms the current state-of-the-art baselines, demonstrating its better adaptability. In tests with the MIT-BIH arrhythmia database (MITDB), EGQAS proves itself to be effective and stable with a large number of data.

基金:

基金编号: 2022YFG0174

语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 计算机科学
小类 | 3 区 计算机:人工智能
最新[2023]版:
大类 | 2 区 计算机科学
小类 | 3 区 计算机:人工智能
JCR分区:
出版当年[2023]版:
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Southwest Petr Univ, Sch Comp Sci, Chengdu 610500, Peoples R China
通讯作者:
通讯机构: [1]Southwest Petr Univ, Sch Comp Sci, Chengdu 610500, Peoples R China [3]Inst Elect & Informat Ind Technol Kash, Silk Rd Talent Bldg,Shenka Ave, Kash 844000, Xinjiang, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号