高级检索
当前位置: 首页 > 详情页

A minimalist and robust chemo-photothermal nanoplatform capable of augmenting autophagy-modulated immune response against breast cancer.

文献详情

资源类型:
Pubmed体系:
机构: [1]State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China. [2]School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China. [3]Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia. [4]West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China. [5]Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China. [6]Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing, 400038, China. [7]School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.
出处:

关键词: Breast cancer Photothermal therapy Immunotherapy Autophagy Itraconazole IR820

摘要:
Previously used in anti-fungal therapy, itraconazole has now been shown to be successful in treating advanced breast cancer (NCT00798135). However, its poor solubility still restricts its application in clinical treatment. There is therefore an urgent need for combined methods to enhance the therapeutic effect of itraconazole (IC) in breast cancer treatment. With this goal, co-assembled IC/IR820 NPs with synergistic photonic hyperthermia and itraconazole payloads have been constructed to overcome these shortcomings. The IC/IR820 NPs show an enhanced therapeutic effect on breast cancer by inducing reactive oxygen species (ROS)-mediated apoptosis and autophagic death. Further evaluation in a mouse model has shown impressive effects of the IC/IR820 NPs on both inhibiting tumor metastasis and activating immunity to prevent tumor recurrence. Mechanistically, itraconazole may promote both tumor cell antigen presentation through autophagy and the activation of dendritic cells to induce an immune response, which displays a synergistic effect with the immune response generated by photothermal therapy to inhibit tumor recurrence. This strategy of combining itraconazole and IR820 into one minimalist and robust nanoplatform through co-assembly results in excellent therapeutic efficacy, suggesting its potential application as an alternative method for the clinical treatment of breast cancer.© 2022 The Authors.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 2 区 工程:生物医学 2 区 材料科学:生物材料
最新[2023]版:
大类 | 1 区 医学
小类 | 2 区 工程:生物医学 2 区 材料科学:生物材料
第一作者:
第一作者机构: [1]State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43389 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号