高级检索
当前位置: 首页 > 详情页

FeS2@COF based nanocarrier for photothermal-enhanced chemodynamic/thermodynamic tumor therapy and immunotherapy via reprograming tumor-associated macrophages

文献详情

资源类型:
Pubmed体系:
机构: [1]Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China [2]Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China [3]Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
出处:

关键词: FeS2 Covalent organic frameworks Thermodynamic therapy Chemodynamic therapy Photothermal therapy

摘要:
Developing high-performance nanomedicines to enhance antitumor efficacy remains a hot point in the field of biomedicine. In this study, we designed a versatile nanocomposite (FeS₂@COF-HA/AIPH) integrating covalent organic frameworks (COF) functionalized with pyrite (FeS₂) for synergistic photothermal (PTT), chemodynamic (CDT), thermodynamic (TDT) therapies, and immunotherapy. The superior photothermal effects and catalytic capabilities of FeS₂@COF enabled a minimally invasive PTT/CDT combination. The nanoplatform, with its mesoporous structure, also served as a drug delivery system, encapsulating the thermos-decomposable initiator AIPH. The hyaluronic acid (HA) coating not only improved tumor-targeting efficiency but also prevented nonspecific AIPH release. Under near-infrared (NIR) irradiation, the localized hyperthermia triggered AIPH decomposition, generating toxic alkyl radicals (•R) for TDT, further enhancing CDT efficiency. The combination of PTT, CDT, TDT, and immunotherapy led to potent antitumor effects with minimal systemic toxicity, both in vitro and in vivo. Notably, the nanoplatform effectively reprogrammed tumor-associated macrophages (TAMs) from an M2 to M1 phenotype, boosting antitumor immunity. This multifunctional platform thus offers a promising strategy for integrated PTT, CDT, TDT, and immune activation in tumor therapy.© 2024. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 生物学
小类 | 1 区 生物工程与应用微生物 2 区 纳米科技
第一作者:
第一作者机构: [1]Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China [2]Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号