高级检索
当前位置: 首页 > 详情页

宫颈癌后装治疗中基于U-net的自动施源器分割

| 导出 |

文献详情

资源类型:

收录情况: ◇ 统计源期刊

机构: [1]成都理工大学地学核技术四川省重点实验室 [2]四川省肿瘤医院·研究所
出处:
ISSN:

关键词: 深度学习 施源器分割 后装 宫颈癌

摘要:
目的在CT引导的宫颈癌三维后装治疗计划制定中,应用U-net模型完成施源器的自动分割。方法基于U-net网络创建深度学习模型,将2019年12月—2020年10月的27例宫颈癌患者数据经过预处理后写入数据集,按照15∶2∶10的比例将数据集划分为训练集、验证集和测试集。将训练集和验证集数据放入模型中训练并验证,并将测试集数据应用到训练好的神经网络中分割出施源器,采用戴斯相似性系数(DSC)、95百分位豪斯多夫距离(HD95)、相关体积差异(RVD)、精确率和召回率对模型进行评价。结果 10例测试集患者平均的DSC为0.90,HD95为1.26 mm, RVD为-0.06,精确率为0.94,召回率为0.88,分割时间为5 s。结论本研究利用U-net网络实现了宫颈癌三维后装治疗计划制定施源器的自动分割,可将其应用于施源器的重建,于实现临床计划制定的自动化具有较大意义。

基金:

基金编号: 编号: 2019YFS0473

语种:
第一作者:
第一作者机构: [1]成都理工大学地学核技术四川省重点实验室 [2]四川省肿瘤医院·研究所
通讯作者:
通讯机构: [1]成都理工大学地学核技术四川省重点实验室 [2]四川省肿瘤医院·研究所
推荐引用方式(GB/T 7714):

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号