高级检索
当前位置: 首页 > 详情页

Improved antitumor activity and reduced myocardial toxicity of doxorubicin encapsulated in MPEG-PCL nanoparticles

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, Sichuan [2]Department of Health Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan [3]State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan [4]Institute of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital,Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
出处:
ISSN:

关键词: drug delivery MPEG-PCL doxorubicin nanoparticle melanoma pulmonary metastasis

摘要:
Doxorubicin (Dox) is a broad-spectrum antitumor drug used for the treatment of many types of malignant tumors. Although it possesses powerful antitumor activity, its clinical application is seriously encumbered by its unselective distribution and systemic toxicities, particularly myocardial toxicity. Thus, it is imperative to modify Dox to decrease its systemic toxicities and improve its therapeutic index. In the present study, we adopted a novel type of monomethoxy poly(ethylene glycol)-poly(epsilon-caprolactone) (MPEG-PCL) micelles to encapsulate Dox to prepare Dox-loaded MPEG-PCL (Dox/MPEG-PCL) nanoparticles by a controllable self-assembly process. The cellular uptake efficiency and cell proliferation inhibition of the Dox/MPEG-PCL nanoparticles were examined. The antitumor activity of the Dox/MPEG-PCL nanoparticles was tested on a multiple pulmonary metastasis model of melanoma on C57BL/6 mice. Systemic toxicities and survival time were compared between the mice treated with the Dox/MPEG-PCL nanoparticles and free Dox. The potential myocardial toxicity of the Dox/MPEG-PCL nanoparticles was investigated using a prolonged observation period. Encapsulation of Dox in MPEG-PCL nanoparticles significantly improved the cellular uptake and cell proliferation inhibition of Dox in vivo. Intravenous injection of Dox/MPEG-PCL nanoparticles obtained significant inhibition of the growth and metastasis of melanoma in the lung and prolonged survival time compared with free Dox (P<0.05). The Dox/MPEG-PCL nanoparticles did not show obvious additional systemic toxicities compared with free Dox during the treatment time. During the prolonged observation period, obvious decreased cardiac toxicity was observed in the Dox/MPEG-PCL nanoparticle-treated mice compared with that observed in the free Dox-treated mice. These results indicated that encapsulating Dox with MPEG-PCL micelles could significantly promote its antitumor activity and reduce its toxicity to the myocardium.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2016]版:
Q3 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, Sichuan [*1]Department of Radiation Oncology, Sichuan Cancer Hospital, 55 Renminnan Road, Sec. 4, Chengdu, Sichuan 610041, P.R. China
通讯作者:
通讯机构: [1]Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, Sichuan [*1]Department of Radiation Oncology, Sichuan Cancer Hospital, 55 Renminnan Road, Sec. 4, Chengdu, Sichuan 610041, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:2 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号