高级检索
当前位置: 首页 > 详情页

Mapping of the EORTC QLQ-LC43 to EQ-5D-5 L index in patients with lung cancer: comparison of traditional regression models with machine learning technique

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SSCI

机构: [1]Univ Elect Sci & Technol China, Sichuan Clin Res Ctr Canc, Sichuan Canc Ctr, Sichuan Canc Hosp & Inst,Affiliated Canc Hosp,Dept, Chengdu, Peoples R China [2]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst,Affiliated Canc Hosp, Sichuan Clin Res Ctr Canc,Sichuan Canc Ctr, Nursing Dept, Chengdu, Peoples R China [3]Univ Elect Sci & Technol China, Sch Med, Sichuan Canc Ctr, Ctr Canc Prevent Res,Sichuan Canc Hosp & Inst, Chengdu, Sichuan, Peoples R China
出处:
ISSN:

关键词: Lung cancer Mapping Machine learning EQ-5D-5L QLQ-LC43 Health-related quality of life (HRQoL)

摘要:
ObjectiveThe objective of this study was to create a mapping algorithm by utilizing traditional regression analyses and a machine learning approach to estimate EQ-5D-5 L values based on EORTC QLQ-LC43 data in the absence of direct EQ-5D-5 L measurements.MethodsData for EQ-5D-5 L and EORTC QLQ-LC43 were collected from patients with lung cancer at the Departments of Thoracic Surgery, Medical Oncology, and Radiation Oncology at Sichuan Cancer Hospital. Mapping algorithms were applied using the ordinary least squares model (OLS), Tobit model, Beta mixture regression (BM), the adjusted limited dependent variable mixture model (ALDVMM), and ridge regression (RR) as a machine learning model to map QLQ-LC43 results based on EQ-5D-5 L scores. To develop these models, dimension scores, squared items, and interaction items were incorporated. Performance metrics, including R-2, root mean square error (RMSE), and mean absolute error (MAE), were used to identify the optimal model. The stability of the models was assessed using five-fold cross-validation (CV).ResultsThe Beta mixture regression model (BETAMIX M1A), incorporating all dimensions of QLQ-C30 and QLQ-LC13 as covariates, exhibited the best mapping performance. The final prediction metrics were R-2=0.816, RMSE = 0.125, MAE = 0.083, AIC=-717.810, and BIC=-482.609. The BM model has good explanatory ability and low prediction error. Five-fold cross-validation (CV) results also demonstrated that the BM model had the best mapping power.ConclusionsThis study developed an optimized mapping algorithm to predict the utility index from the QLQ-LC43 to the EQ-5D-5 L, offering an effective alternative for estimating EQ-5D-5 L values when preference-based health utility data are unavailable.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 经济学 3 区 卫生政策与服务
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 经济学 3 区 卫生政策与服务
JCR分区:
出版当年[2024]版:
Q1 ECONOMICS Q1 HEALTH POLICY & SERVICES
最新[2024]版:
Q1 ECONOMICS Q1 HEALTH POLICY & SERVICES

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sichuan Clin Res Ctr Canc, Sichuan Canc Ctr, Sichuan Canc Hosp & Inst,Affiliated Canc Hosp,Dept, Chengdu, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65763 今日访问量:1 总访问量:5149 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号