高级检索
当前位置: 首页 > 详情页

Large language models in clinical trials: applications, technical advances, and future directions

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Southern Med Univ, Nanjing Med Univ, Affiliated Kangda Coll, Donghai Cty Peoples Hosp, Lianyungang 222000, Jiangsu, Peoples R China [2]Southern Med Univ, Zhujiang Hosp, Dept Oncol, Lianyungang 222000, Jiangsu, Peoples R China [3]Naval Med Univ, Mil Med Univ 2, Changhai Hosp, Dept Urol, Shanghai 200433, Peoples R China [4]Univ Macau, Fac Hlth Sci, Canc Ctr, Macau 999078, Peoples R China [5]Univ Macau, Inst Translat Med, Fac Hlth Sci, Macau 999078, Peoples R China [6]TU Wien, Inst Logic & Computat, Vienna, Austria [7]Southern Med Univ, Zhujiang Hosp, Dept Oncol, Guangzhou 510280, Guangdong, Peoples R China [8]Shanghai Jiao Tong Univ, Sch Med, Shanghai Gen Hosp, Dept Urol, Shanghai 200080, Peoples R China [9]Jinan Univ, Zhuhai Hosp, Zhuhai Peoples Hosp, Dept Joint Surg & Sports Med, Zhuhai 519000, Guangdong, Peoples R China [10]Southern Med Univ, Nanfang Hosp, Dept Oncol, Guangzhou 510515, Guangdong, Peoples R China [11]South China Univ Technol, Affiliated Hosp 6, Canc Ctr, Sch Med, Foshan 528000, Guangdong, Peoples R China [12]Wenzhou Med Univ, Quzhou Peoples Hosp, Quzhou Affiliated Hosp, Hepatobiliary Surg Dept, Quzhou 324000, Zhejiang, Peoples R China [13]Qingdao Univ, Affiliated Hosp, Dept Urol, Qingdao 2666000, Shandong, Peoples R China [14]Univ Elect Sci & Technol China, Sichuan Prov Peoples Hosp, Dept Radiol, Chengdu 610072, Sichuan, Peoples R China [15]Univ Hong Kong, Fac Med, Hong Kong 999077, Peoples R China [16]Monash Univ, Sch Publ Hlth & Prevent Med, Melbourne, Vic 3000, Australia [17]Suzhou Ind Pk Monash Res Inst Sci & Technol, Suzhou 215000, Jiangsu, Peoples R China [18]Anhui Med Univ, Coll & Hosp Stomatol, Key Lab Oral Dis Res Anhui Prov, Hefei 230032, Anhui, Peoples R China [19]Sun Yat Sen Univ, Guangdong Prov Clin Res Ctr Canc, State Key Lab Oncol Southern China, Dept Urol,Canc Ctr, Guangzhou 510060, Guangdong, Peoples R China [20]Harbin Med Univ, Affiliated Hosp 1, Dept Urol, Harbin 150001, Heilongjiang, Peoples R China [21]Cent South Univ, Xiangya Hosp, Dept Neurosurg, Changsha 410008, Hunan, Peoples R China [22]Cent South Univ, Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Changsha 410008, Hunan, Peoples R China [23]Fudan Univ, Zhongshan Hosp, Dept Intervent Radiol, Shanghai 200032, Peoples R China
出处:
ISSN:

关键词: Clinical trials Large language models Natural language processing LLMs Clinical data management

摘要:
BackgroundAs clinical trials scale up and grow more complex, researchers are facing mounting challenges, including inefficient participant recruitment, complex data management, and limited risk monitoring. These issues not only increase the workload for clinical researchers but also compromise trial reliability and safety, potentially elevating the risk of trial failure. Large language models (LLMs), as an emerging technology in natural language processing (NLP), exhibit notable advantages across various tasks, such as information extraction and relation classification.Main textWith domain-specific pre-training and fine-tuning, LLMs present promising potential in clinical trial tasks such as automated patient-trial matching and the extraction and processing of trial data, which are anticipated to reduce time and financial costs. Additionally, they offer valuable insights for scientific rationale, medical decision-making, and trial endpoint prediction. In this context, an increasing number of studies have begun to explore the applications of LLMs in the design and conduct of clinical trials.ConclusionThis paper provides a review of LLM applications in clinical trials with an emphasis on real-world integration. Comparative advantages over traditional NLP models, technical limitations, and future implementation challenges are also discussed. This narrative review aims to highlight the potential of LLMs in clinical trial workflows and clarify key challenges and future directions.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 1 区 医学:内科
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 医学:内科
JCR分区:
出版当年[2024]版:
Q1 MEDICINE, GENERAL & INTERNAL
最新[2024]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Southern Med Univ, Nanjing Med Univ, Affiliated Kangda Coll, Donghai Cty Peoples Hosp, Lianyungang 222000, Jiangsu, Peoples R China [2]Southern Med Univ, Zhujiang Hosp, Dept Oncol, Lianyungang 222000, Jiangsu, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Southern Med Univ, Nanjing Med Univ, Affiliated Kangda Coll, Donghai Cty Peoples Hosp, Lianyungang 222000, Jiangsu, Peoples R China [2]Southern Med Univ, Zhujiang Hosp, Dept Oncol, Lianyungang 222000, Jiangsu, Peoples R China [21]Cent South Univ, Xiangya Hosp, Dept Neurosurg, Changsha 410008, Hunan, Peoples R China [22]Cent South Univ, Xiangya Hosp, Natl Clin Res Ctr Geriatr Disorders, Changsha 410008, Hunan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:0 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号