高级检索
当前位置: 首页 > 详情页

Role of S1PR1 in VEGF-exosomes mediated resistance of hepatocellular carcinoma to anti-angiogenesis therapy

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China [2]Department of Radiotherapy, Precision Radiation in Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu 610041, China
出处:
ISSN:

关键词: Hepatocellular carcinoma cell Tumor-associated endothelial cell VEGF-exosomes S1PR1

摘要:
Anti-angiogenesis therapy (AAT) triggers vascular endothelial growth factor (VEGF)-exosomes secretion from tumor-associated endothelial cells (TAECs) for hepatocellular carcinoma (HCC) tubulogenesis and metastasis. Sphingosine-1-phosphate receptor 1 (S1PR1) has been implicated in HCC progression, but it was targeted by microRNA-9 (miR-9) that might mediate the formation of TAECs. This study aims to investigate the role of miR-9 and VEGF-exosomes in S1PR1-mediated HCC progression and resistance to AAT.The expression and distribution of miR-9 in HCC tissues were analyzed using qRT-PCR and fluorescence in situ hybridization (FISH). The impact of S1PR1 knockdown on VEGF-exosome uptake, as well as miR-9 and VEGF-exosome-induced epithelial-mesenchymal transition (EMT), migration, and invasion of HCC cells, was assessed by Transwell assays, fluorescence microscopy, and Western blotting.miR-9 expression was significantly upregulated in HCC tissues and selectively localized in CD34⁺ endothelial cells within paracancerous microvessels, suggesting its role in TAEC transformation.miR-9 promoted EMT and enhanced HCC cell migration and invasion, effects that were further potentiated by VEGF-exosomes. S1PR1 knockdown significantly inhibited VEGF-exosome uptake and suppressed miR-9- and VEGF-exosome-induced EMT, migration, and invasion of HCC cells.In conclusion, miR-9 facilitates HCC progression by enhancing tumor malignancy and promoting AAT resistance through TAEC-mediated VEGF-exosome secretion. S1PR1 is a critical mediator of this process, and its inhibition represents a potential therapeutic strategy to overcome AAT resistance in HCC.© 2025. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2024]版:
Q1 ONCOLOGY
最新[2024]版:
Q1 ONCOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [2]Department of Radiotherapy, Precision Radiation in Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu 610041, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65780 今日访问量:0 总访问量:5151 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号