高级检索
当前位置: 首页 > 详情页

Disrupting calcium homeostasis and glycometabolism in engineered lipid-based pharmaceuticals propel cancer immunogenic death

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:领军期刊

机构: [1]Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China [2]Central Laboratory and Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China [3]Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai 200032, China [4]Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou 225009, China
出处:
ISSN:

关键词: Starvation therapy Cancer plasticity Calcium homeostasis disruption Glycometabolism interference Immunogenic cell death Oxidative stress Lactic acid Engineered lipids

摘要:
Homeostasis and energy and substance metabolism reprogramming shape various tumor microenvironment to sustain cancer stemness, self-plasticity and treatment resistance. Aiming at them, a lipid-based pharmaceutical loaded with CaO2 and glucose oxidase (GOx) (LipoCaO2/GOx, LCG) has been obtained to disrupt calcium homeostasis and interfere with glycometabolism. The loaded GOx can decompose glucose into H2O2 and gluconic acid, thus competing with anaerobic glycolysis to hamper lactic acid (LA) secretion. The obtained gluconic acid further deprives CaO2 to produce H2O2 and release Ca2 & thorn;, disrupting Ca2 & thorn; homeostasis, which synergizes with GOx-mediated glycometabolism interference to deplete glutathione (GSH) and yield reactive oxygen species (ROS). Systematical experiments reveal that these sequential multifaceted events unlocked by Ca2 & thorn; homeostasis disruption and glycometabolism interference, ROS production and LA inhibition, successfully enhance cancer immunogenic deaths of breast cancer cells, hamper regulatory T cells (Tregs) infiltration and promote CD8+ T recruitment, which receives a considerably-inhibited outcome against breast cancer progression. Collectively, this calcium homeostasis disruption glycometabolism interference strategy effectively combines ion interference therapy with starvation therapy to eventually evoke an effective anti-tumor immune environment, which represents in the field of biomedical research. <feminine ordinal indicator> 2025 The Authors. Published by Elsevier B.V. on behalf of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 1 区 药学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 药学
JCR分区:
出版当年[2024]版:
Q1 PHARMACOLOGY & PHARMACY
最新[2024]版:
Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China [2]Central Laboratory and Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:65768 今日访问量:2 总访问量:5150 更新日期:2025-12-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号