高级检索
当前位置: 首页 > 详情页

XGBoost-based model for predicting PICC occlusion risk in cancer patients: Insights from SHAP analysis

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc, Sichuan Canc Ctr,Dept Nursing, Chengdu, Peoples R China [2]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Radiotherapy Ctr, Sichuan Clin Res Ctr Canc,Radiat Oncol Key Lab Sic, Chengdu, Peoples R China [3]McGill Univ, Montreal Neurol Inst, McConnell Imaging Ctr, Montreal, PQ H3A 2B4, Canada [4]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc, Sichuan Canc Ctr,Dept Radiol, Chengdu, Peoples R China
出处:
ISSN:

关键词: PICC Occlusion Risk Machine Learning XGBoost Cancer SHAP Analysis

摘要:
Introduction: Peripherally inserted central catheters (PICC) are commonly used in cancer patients, but occlusion is a frequent complication. Early prediction of the occlusion risk can guide timely interventions and improve patient outcomes. Objective: This study develops and validates a machine-learning model to predict the PICC occlusion risk in cancer patients using clinical data from electronic medical records. Methodology: In this retrospective, single-center study, data from cancer patients with PICC lines were analyzed. Three machine learning algorithms-logistic regression, random forest, and XGBoost-were used to predict the occlusion risk. Model performance was evaluated by the area under the receiver operating characteristic curve (AUC). Key risk factors, including patient demographics, clinical conditions, and catheter maintenance practices, were incorporated. Results: XGBoost outperformed the other models, achieving AUC values of 0.909 in the training cohort and 0.759 in the validation cohort. Key predictors of PICC occlusion included catheter duration, electrolyte disturbances, the chemotherapy drug type, and the insertion length. SHAP analysis provided transparent model interpretation. Conclusion: The XGBoost model effectively predicts the PICC occlusion risk and identifies key predictors. While limited by its retrospective design, the study suggests the potential for clinical integration to improve patient outcomes. Further prospective studies are needed.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:综合
最新[2025]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:综合
JCR分区:
出版当年[2024]版:
Q1 ENGINEERING, MULTIDISCIPLINARY
最新[2024]版:
Q1 ENGINEERING, MULTIDISCIPLINARY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc, Sichuan Canc Ctr,Dept Nursing, Chengdu, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:59494 今日访问量:0 总访问量:4869 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号