高级检索
当前位置: 首页 > 详情页

Prediction model for ocular metastasis of breast cancer: machine learning model development and interpretation study

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China [2]Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China [3]Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200030, China [4]School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, Fujian, China [5]School of Medical Information and Engineering, Southwest Medical University, Luzhou, Sichuan 646000, China
出处:

关键词: Ocular metastases in breast cancer Machine learning Bootstrapped aggregation Shapley additive

摘要:
Breast cancer (BC) is caused by the uncontrolled proliferation of breast epithelial cells followed by malignant transformation, and it has the highest incidence among female malignant tumors. The metastasis of BC occurs through direct and lymphatic spread. Although ocular metastasis is relatively rare, it is a good indicator of a worse prognosis. We used machine learning (ML) to establish a model to analyze the risk factors of BC eye metastasis.The clinical data of 2225 patients with BC from 2003 to 2019 were collected and randomly classified into the training and test sets using a ratio of 7:3. Based on the presence or absence of eye metastasis, the patients with BC were classified into the ocular metastasis (OM) and non-ocular metastasis (NOM) groups. Univariate and multivariate logistic regression analyses and least absolute shrinkage and selection operator (LASSO) were conducted. We used six ML algorithms to establish a predictive BC model and used 10-fold cross-validation for internal verification. The area under the receiver operating characteristic (ROC) curve was used to evaluate the predictive ability of the model. In addition, we established a web hazard calculator depending on the best-performing model to facilitate its clinical application. Shapley additive interpretation (SHAP) was used to determine the risk factors and the interpretability of the black box model.Univariate logistic regression analysis showed that histopathology (other types), axillary lymph node metastasis (ALNM) (> 4), Ca2+, total cholesterol (TC), low-density lipoprotein (LDL), apolipoprotein A (ApoA), carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 125, CA153, CA199, alkaline phosphatase (ALP), and hemoglobin (Hb) were risk factors for BC eye metastasis. Multivariate logistic regression analysis showed that CA153, ApoA, and LDL were hazardous components for BC eye metastasis. LASSO showed that ALNM, LDL, CA125, Hb, ALP, and CA199 were the first six key variables that were useful for the diagnosis of ocular metastasis in breast cancer. Bootstrapped aggregation (BAG) demonstrated the discriminative ability (area under ROC curve [AUC] = 0.992, accuracy = 0.953, sensitivity = 0.987). Based on this, we applied the BAG machine learning model to build an online web computing system to help clinicians assist in determining the risk of BC eye metastasis. In addition, two typical cases are analyzed to determine the interpretability of the model.We used ML to establish a risk prediction model for BC ocular metastasis, and BAG showed the greatest performance. The model can predict the risk of OM in patients with BC, facilitate early and timely diagnosis and treatment, and reduce the burden on society.© 2024. The Author(s).

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 肿瘤学
第一作者:
第一作者机构: [1]Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330006, China [2]Department of Ophthalmology, Shanghai General Hospital, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53080 今日访问量:0 总访问量:4588 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号