高级检索
当前位置: 首页 > 详情页

Multimodality deep learning radiomics predicts pathological response after neoadjuvant chemoradiotherapy for esophageal squamous cell carcinoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Chinese Acad Med Sci & Peking Union Med Coll, Natl Canc Ctr, Natl Clin Res Ctr Canc, Dept Radiat Oncol,Canc Hosp, Beijing, Peoples R China [2]Univ Elect Sci & Technol China, Dept Radiat Oncol, Radiat Oncol Key Lab Sichuan Prov,Affiliated Canc, Sichuan Clin Res Ctr Canc,Sichuan Canc Hosp & Inst, Chengdu, Peoples R China [3]Tianjin Med Univ Canc Inst & Hosp, Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc, Dept Radiat Oncol,Key Lab Canc Prevent & Therapy, Tianjin, Peoples R China [4]Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Natl Canc Ctr, Dept Pathol,Canc Hosp, Beijing, Peoples R China [5]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Sichuan Clin Res Ctr Canc,Dept Diagnost Radiol, Sichuan Canc Ctr,Affiliated Canc Hosp,Radiat Oncol, Chengdu, Peoples R China [6]Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Natl Canc Ctr, Dept VIP Med Serv,Canc Hosp, Beijing, Peoples R China [7]Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Natl Canc Ctr, Dept Diagnost Radiol,Canc Hosp, Beijing, Peoples R China [8]Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Natl Canc Ctr, Dept Thorac Surg,Canc Hosp, Beijing, Peoples R China [9]Beihang Univ, Beijing Adv Innovat Ctr Biomed Engn, Sch Biol Sci & Med Engn,Sch Engn Med, Lab Biomech & Mechanobiol,Minist Educ, Beijing, Peoples R China
出处:
ISSN:

关键词: Esophageal neoplasms Multimodal imaging Deep learning Treatment outcome Neoadjuvant chemoradiotherapy

摘要:
ObjectivesThis study aimed to develop and validate a deep-learning radiomics model using CT, T2, and DWI images for predicting pathological complete response (pCR) in patients with esophageal squamous cell carcinoma (ESCC) undergoing neoadjuvant chemoradiotherapy (nCRT).Materials and methodsPatients with ESCC undergoing nCRT followed by surgery were retrospectively enrolled from three institutions and divided into training and testing cohorts. Both traditional and deep-learning radiomics features were extracted from pre-treatment CT, T2, and DWI. Multiple radiomics models were developed, both single modality and integrated, using machine learning algorithms. The models' performance was assessed using receiver operating characteristic curve analysis, with the area under the curve (AUC) as a primary metric, alongside sensitivity and specificity from the cut-off analysis.ResultsThe study involved 151 patients, among whom 63 achieved pCR. The training cohort consisted of 89 patients from Institution 1 (median age 62, 73 males) and the testing cohort included 52 patients from Institution 2 (median age 62, 41 males), and 10 in a clinical trial from Institution 3 (median age 69, 9 males). The integrated model, combining traditional and deep learning radiomics features from CT, T2, and DWI, demonstrated the best performance with an AUC of 0.868 (95% CI: 0.766-0.959), sensitivity of 88% (95% CI: 73.9-100), and specificity of 78.4% (95% CI: 63.6-90.2) in the testing cohort. This model outperformed single-modality models and the clinical model.ConclusionA multimodality deep learning radiomics model, utilizing CT, T2, and DWI images, was developed and validated for accurately predicting pCR of ESCC following nCRT.Critical relevance statementOur research demonstrates the satisfactory predictive value of multimodality deep learning radiomics for the response of nCRT in ESCC and provides a potentially helpful tool for personalized treatment including organ preservation strategy.Key PointsAfter neoadjuvant chemoradiotherapy, patients with ESCC have pCR rates of about 40%.The multimodality deep learning radiomics model, could predict pCR after nCRT with high accuracy.The multimodality radiomics can be helpful in personalized treatment of esophageal cancer.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Chinese Acad Med Sci & Peking Union Med Coll, Natl Canc Ctr, Natl Clin Res Ctr Canc, Dept Radiat Oncol,Canc Hosp, Beijing, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:53699 今日访问量:0 总访问量:4607 更新日期:2025-02-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号