高级检索
当前位置: 首页 > 详情页

Computed tomography-based radiomics nomogram for prediction of lympho-vascular and perineural invasion in esophageal squamous cell cancer patients: a retrospective cohort study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Affiliated Canc Hosp, Radiat Onocol Key Lab Sichuan Prov,Dept Radiat Onc, Chengdu 610041, Peoples R China [2]Univ Elect Sci & Technol China, Affiliated Canc Hosp, Sichuan Canc Hosp & Inst, Radiat Oncol Key Lab Sichuan Prov,Dept Thorac Surg, Chengdu 610041, Peoples R China
出处:
ISSN:

关键词: Esophageal squamous cell cancer Lympho-vascular invasion Perineural invasion Contrast-enhanced CT Radiomic LASSO

摘要:
PurposeLympho-vascular invasion (LVI) and perineural invasion (PNI) have been established as prognostic factors in various types of cancers. The preoperative prediction of LVI and PNI has the potential to guide personalized medicine strategies for patients with esophageal squamous cell cancer (ESCC). This study investigates whether radiomics features derived from preoperative contrast-enhanced CT could predict LVI and PNI in ESCC patients.Methods and materialsA retrospective cohort of 544 ESCC patients who underwent esophagectomy were included in this study. Preoperative contrast-enhanced CT images, pathological results of PNI and LVI, and clinical characteristics were collected. For each patient, the gross tumor volume (GTV-T) and lymph nodes volume (GTV-N) were delineated and four categories of radiomics features (first-order, shape, textural and wavelet) were extracted from GTV-T and GTV-N. The Mann-Whitney U test was used to select significant features associated with LVI and PNI in turn. Subsequently, radiomics signatures for LVI and PNI were constructed using LASSO regression with ten-fold cross-validation. Significant clinical characteristics were combined with radiomics signature to develop two nomogram models for predicting LVI and PNI, respectively. The area under the curve (AUC) and calibration curve were used to evaluate the predictive performance of the models.ResultsThe radiomics signature for LVI prediction consisted of 28 features, while the PNI radiomics signature comprised 14 features. The AUCs of the LVI radiomics signature were 0.77 and 0.74 in the training and validation groups, respectively, while the AUCs of the PNI radiomics signature were 0.69 and 0.68 in the training and validation groups. The nomograms incorporating radiomics signatures and significant clinical characteristics such as age, gender, thrombin time and D-Dimer showed improved predictive performance for both LVI (AUC: 0.82 and 0.80 in the training and validation group) and PNI (AUC: 0.75 and 0.72 in the training and validation groups) compared to the radiomics signature alone.ConclusionThe radiomics features extracted from preoperative contrast-enhanced CT of gross tumor and lymph nodes have demonstrated their potential in predicting LVI and PNI in ESCC patients. Furthermore, the incorporation of clinical characteristics has shown additional value, resulting in improved predictive performance.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 肿瘤学 2 区 核医学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Univ Elect Sci & Technol China, Sichuan Canc Hosp & Inst, Affiliated Canc Hosp, Radiat Onocol Key Lab Sichuan Prov,Dept Radiat Onc, Chengdu 610041, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:52808 今日访问量:0 总访问量:4561 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号