高级检索
当前位置: 首页 > 详情页

A Targeted and Responsive Nanoprodrug Delivery System for Synergistic Glioma Chemotherapy

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China. [2]Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, China. [3]Key Laboratory of Birth Defects and Related Diseases of Women and Children(Sichuan University), Ministry of Education, Chengdu, 610041, China. [4]West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
出处:
ISSN:

关键词: BBB penetration curcumin DOX prodrug glioma GSH-responsive tumor microenvironment

摘要:
Doxorubicin (DOX) is widely used as a chemotherapeutic agent for both hematologic and solid tumors and is a reasonable candidate for glioma treatment. However, its effectiveness is hindered by significant toxicity and drug resistance. Moreover, the presence of the blood-brain barrier (BBB) brings a crucial challenge to glioma therapy. In response, a GSH-responsive and actively targeted nanoprodrug delivery system (cRGD/PSDOX-Cur@NPs) are developed. In this system, a disulfide bond-bridged DOX prodrug (PEG-SS-DOX) is designed to release specifically in the high glutathione (GSH) tumor environment, markedly reducing the cardiotoxicity associated with DOX. To further address DOX resistance, curcumin, serving as a P-glycoprotein (P-gp) inhibitor, effectively increased cellular DOX concentration. Consequently, cRGD/PSDOX-Cur@NPs exhibited synergistic anti-tumor effects in vitro. Furthermore, in vivo experiments validated the superior BBB penetration and brain-targeting abilities of cRGD/PSDOX-Cur@NPs, showcasing the remarkable potential for treating both subcutaneous and orthotopic gliomas. This research underscores that this nanoprodrug delivery system presents a novel approach to inhibiting glioma while addressing resistance and systemic toxicity.© 2024 Wiley-VCH GmbH.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 材料科学
小类 | 1 区 物理:应用 2 区 化学:综合 2 区 物理化学 2 区 材料科学:综合 2 区 纳米科技 2 区 物理:凝聚态物理
最新[2023]版:
大类 | 2 区 材料科学
小类 | 1 区 物理:应用 2 区 化学:综合 2 区 物理化学 2 区 材料科学:综合 2 区 纳米科技 2 区 物理:凝聚态物理
第一作者:
第一作者机构: [1]Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43389 今日访问量:0 总访问量:3120 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号