高级检索
当前位置: 首页 > 详情页

An Overview: The Diversified Role of Mitochondria in Cancer Metabolism

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China. [2]Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China. [3]Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China. [4]Xi Chen, Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. [5]Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, 200433, Shanghai, China. [6]Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 39216, Jackson, Mississippi, USA. [7]Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. [8]Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China. [9]Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
出处:
ISSN:

关键词: mitochondria cancer tumor metastasis tumor metabolism

摘要:
Mitochondria are intracellular organelles involved in energy production, cell metabolism and cell signaling. They are essential not only in the process of ATP synthesis, lipid metabolism and nucleic acid metabolism, but also in tumor development and metastasis. Mutations in mtDNA are commonly found in cancer cells to promote the rewiring of bioenergetics and biosynthesis, various metabolites especially oncometabolites in mitochondria regulate tumor metabolism and progression. And mutation of enzymes in the TCA cycle leads to the unusual accumulation of certain metabolites and oncometabolites. Mitochondria have been demonstrated as the target for cancer treatment. Cancer cells rely on two main energy resources: oxidative phosphorylation (OXPHOS) and glycolysis. By manipulating OXPHOS genes or adjusting the metabolites production in mitochondria, tumor growth can be restrained. For example, enhanced complex I activity increases NAD+/NADH to prevent metastasis and progression of cancers. In this review, we discussed mitochondrial function in cancer cell metabolism and specially explored the unique role of mitochondria in cancer stem cells and the tumor microenvironment. Targeting the OXPHOS pathway and mitochondria-related metabolism emerging as a potential therapeutic strategy for various cancers.© The author(s).

基金:
语种:
高被引:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学
JCR分区:
出版当年[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China.
共同第一作者:
通讯作者:
通讯机构: [1]Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, Shanghai 200092, China. [9]Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai 200092, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:43390 今日访问量:1 总访问量:3121 更新日期:2024-09-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 四川省肿瘤医院 技术支持:重庆聚合科技有限公司 地址:成都市人民南路四段55号