机构:[1]Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.[2]School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.[3]Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou, China.[4]Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China.[5]Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.四川大学华西医院
Medico-Engineering
Cooperation Funds from University of Electronic Science and
Technology of China (No. ZYGX2021YGLH213, No.
ZYGX2022YGRH016), the Municipal Government of Quzhou
(Grant 2021D007, Grant 2021D008, Grant 2021D015, Grant
2021D018), as well as the Zhejiang Provincial Natural Science
Foundation of China under Grant No. LGF22G010009
语种:
外文
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类|3 区医学
小类|3 区肿瘤学
最新[2023]版:
大类|3 区医学
小类|3 区肿瘤学
第一作者:
第一作者机构:[1]Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.[2]School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
Yang Meiyi,He Xiaopeng,Xu Lifeng,et al.CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma[J].Frontiers in oncology.2022,12:961779.doi:10.3389/fonc.2022.961779.
APA:
Yang Meiyi,He Xiaopeng,Xu Lifeng,Liu Minghui,Deng Jiali...&Liu Ming.(2022).CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma.Frontiers in oncology,12,
MLA:
Yang Meiyi,et al."CT-based transformer model for non-invasively predicting the Fuhrman nuclear grade of clear cell renal cell carcinoma".Frontiers in oncology 12.(2022):961779